Listing 1 - 5 of 5 |
Sort by
|
Choose an application
This book gives a new foundation for the theory of links in 3-space modeled on the modern developmentby Jaco, Shalen, Johannson, Thurston et al. of the theory of 3-manifolds. The basic construction is a method of obtaining any link by "splicing" links of the simplest kinds, namely those whose exteriors are Seifert fibered or hyperbolic. This approach to link theory is particularly attractive since most invariants of links are additive under splicing.Specially distinguished from this viewpoint is the class of links, none of whose splice components is hyperbolic. It includes all links constructed by cabling and connected sums, in particular all links of singularities of complex plane curves. One of the main contributions of this monograph is the calculation of invariants of these classes of links, such as the Alexander polynomials, monodromy, and Seifert forms.
Algebraic geometry --- Differential geometry. Global analysis --- Link theory. --- Curves, Plane. --- SINGULARITIES (Mathematics) --- Curves, Plane --- Invariants --- Link theory --- Singularities (Mathematics) --- Geometry, Algebraic --- Low-dimensional topology --- Piecewise linear topology --- Higher plane curves --- Plane curves --- Invariants. --- 3-sphere. --- Alexander Grothendieck. --- Alexander polynomial. --- Algebraic curve. --- Algebraic equation. --- Algebraic geometry. --- Algebraic surface. --- Algorithm. --- Ambient space. --- Analytic function. --- Approximation. --- Big O notation. --- Call graph. --- Cartesian coordinate system. --- Characteristic polynomial. --- Closed-form expression. --- Cohomology. --- Computation. --- Conjecture. --- Connected sum. --- Contradiction. --- Coprime integers. --- Corollary. --- Curve. --- Cyclic group. --- Determinant. --- Diagram (category theory). --- Diffeomorphism. --- Dimension. --- Disjoint union. --- Eigenvalues and eigenvectors. --- Equation. --- Equivalence class. --- Euler number. --- Existential quantification. --- Exterior (topology). --- Fiber bundle. --- Fibration. --- Foliation. --- Fundamental group. --- Geometry. --- Graph (discrete mathematics). --- Ground field. --- Homeomorphism. --- Homology sphere. --- Identity matrix. --- Integer matrix. --- Intersection form (4-manifold). --- Isolated point. --- Isolated singularity. --- Jordan normal form. --- Knot theory. --- Mathematical induction. --- Monodromy matrix. --- Monodromy. --- N-sphere. --- Natural transformation. --- Newton polygon. --- Newton's method. --- Normal (geometry). --- Notation. --- Pairwise. --- Parametrization. --- Plane curve. --- Polynomial. --- Power series. --- Projective plane. --- Puiseux series. --- Quantity. --- Rational function. --- Resolution of singularities. --- Riemann sphere. --- Riemann surface. --- Root of unity. --- Scientific notation. --- Seifert surface. --- Set (mathematics). --- Sign (mathematics). --- Solid torus. --- Special case. --- Stereographic projection. --- Submanifold. --- Summation. --- Theorem. --- Three-dimensional space (mathematics). --- Topology. --- Torus knot. --- Torus. --- Tubular neighborhood. --- Unit circle. --- Unit vector. --- Unknot. --- Variable (mathematics).
Choose an application
This book offers a self-contained account of the 3-manifold invariants arising from the original Jones polynomial. These are the Witten-Reshetikhin-Turaev and the Turaev-Viro invariants. Starting from the Kauffman bracket model for the Jones polynomial and the diagrammatic Temperley-Lieb algebra, higher-order polynomial invariants of links are constructed and combined to form the 3-manifold invariants. The methods in this book are based on a recoupling theory for the Temperley-Lieb algebra. This recoupling theory is a q-deformation of the SU(2) spin networks of Roger Penrose. The recoupling theory is developed in a purely combinatorial and elementary manner. Calculations are based on a reformulation of the Kirillov-Reshetikhin shadow world, leading to expressions for all the invariants in terms of state summations on 2-cell complexes. Extensive tables of the invariants are included. Manifolds in these tables are recognized by surgery presentations and by means of 3-gems (graph encoded 3-manifolds) in an approach pioneered by Sostenes Lins. The appendices include information about gems, examples of distinct manifolds with the same invariants, and applications to the Turaev-Viro invariant and to the Crane-Yetter invariant of 4-manifolds.
Drie-menigvuldigheden (Topologie) --- Knopentheorie --- Knot theory --- Noeuds [Theorie des ] --- Three-manifolds (Topology) --- Trois-variétés (Topologie) --- Knot theory. --- Algebraic topology --- Invariants --- Mathematics --- Invariants (Mathematics) --- Invariants. --- 3-manifolds (Topology) --- Manifolds, Three dimensional (Topology) --- Three-dimensional manifolds (Topology) --- Low-dimensional topology --- Topological manifolds --- Knots (Topology) --- 3-manifold. --- Addition. --- Algorithm. --- Ambient isotopy. --- Axiom. --- Backslash. --- Barycentric subdivision. --- Bijection. --- Bipartite graph. --- Borromean rings. --- Boundary parallel. --- Bracket polynomial. --- Calculation. --- Canonical form. --- Cartesian product. --- Cobordism. --- Coefficient. --- Combination. --- Commutator. --- Complex conjugate. --- Computation. --- Connected component (graph theory). --- Connected sum. --- Cubic graph. --- Diagram (category theory). --- Dimension. --- Disjoint sets. --- Disjoint union. --- Elaboration. --- Embedding. --- Equation. --- Equivalence class. --- Explicit formula. --- Explicit formulae (L-function). --- Factorial. --- Fundamental group. --- Graph (discrete mathematics). --- Graph embedding. --- Handlebody. --- Homeomorphism. --- Homology (mathematics). --- Identity element. --- Intersection form (4-manifold). --- Inverse function. --- Jones polynomial. --- Kirby calculus. --- Line segment. --- Linear independence. --- Matching (graph theory). --- Mathematical physics. --- Mathematical proof. --- Mathematics. --- Maxima and minima. --- Monograph. --- Natural number. --- Network theory. --- Notation. --- Numerical analysis. --- Orientability. --- Orthogonality. --- Pairing. --- Pairwise. --- Parametrization. --- Parity (mathematics). --- Partition function (mathematics). --- Permutation. --- Poincaré conjecture. --- Polyhedron. --- Quantum group. --- Quantum invariant. --- Recoupling. --- Recursion. --- Reidemeister move. --- Result. --- Roger Penrose. --- Root of unity. --- Scientific notation. --- Sequence. --- Significant figures. --- Simultaneous equations. --- Smoothing. --- Special case. --- Sphere. --- Spin network. --- Summation. --- Symmetric group. --- Tetrahedron. --- The Geometry Center. --- Theorem. --- Theory. --- Three-dimensional space (mathematics). --- Time complexity. --- Tubular neighborhood. --- Two-dimensional space. --- Vector field. --- Vector space. --- Vertex (graph theory). --- Winding number. --- Writhe.
Choose an application
This accessible book provides an introduction to the analysis and design of dynamic multiagent networks. Such networks are of great interest in a wide range of areas in science and engineering, including: mobile sensor networks, distributed robotics such as formation flying and swarming, quantum networks, networked economics, biological synchronization, and social networks. Focusing on graph theoretic methods for the analysis and synthesis of dynamic multiagent networks, the book presents a powerful new formalism and set of tools for networked systems. The book's three sections look at foundations, multiagent networks, and networks as systems. The authors give an overview of important ideas from graph theory, followed by a detailed account of the agreement protocol and its various extensions, including the behavior of the protocol over undirected, directed, switching, and random networks. They cover topics such as formation control, coverage, distributed estimation, social networks, and games over networks. And they explore intriguing aspects of viewing networks as systems, by making these networks amenable to control-theoretic analysis and automatic synthesis, by monitoring their dynamic evolution, and by examining higher-order interaction models in terms of simplicial complexes and their applications. The book will interest graduate students working in systems and control, as well as in computer science and robotics. It will be a standard reference for researchers seeking a self-contained account of system-theoretic aspects of multiagent networks and their wide-ranging applications. This book has been adopted as a textbook at the following universities: ? University of Stuttgart, Germany Royal Institute of Technology, Sweden Johannes Kepler University, Austria Georgia Tech, USA University of Washington, USA Ohio University, USA
Network analysis (Planning) --- Multiagent systems --- Agent-based model (Computer software) --- MASs (Multiagent systems) --- Multi-agent systems --- Systems, Multiagent --- Intelligent agents (Computer software) --- Project networks --- Planning --- System analysis --- Graphic methods. --- Mathematical models. --- Mathematical models --- Graphic methods --- Addition. --- Adjacency matrix. --- Algebraic graph theory. --- Algorithm. --- Automorphism. --- Bipartite graph. --- Cardinality. --- Cartesian product. --- Circulant graph. --- Combinatorics. --- Complete graph. --- Computation. --- Connectivity (graph theory). --- Controllability. --- Convex combination. --- Corollary. --- Cycle graph (algebra). --- Cycle space. --- Degree (graph theory). --- Degree matrix. --- Diagonal matrix. --- Diameter. --- Differentiable function. --- Dimension. --- Directed graph. --- Division by zero. --- Dynamical system. --- Eigenvalues and eigenvectors. --- Equilibrium point. --- Estimation. --- Estimator. --- Existential quantification. --- Extremal graph theory. --- Graph (discrete mathematics). --- Graph theory. --- Identity matrix. --- Incidence matrix. --- Information exchange. --- Initial condition. --- Interconnection. --- Iteration. --- Kalman filter. --- Kronecker product. --- LTI system theory. --- LaSalle's invariance principle. --- Laplacian matrix. --- Least squares. --- Line graph. --- Linear map. --- Lipschitz continuity. --- Lyapunov function. --- Lyapunov stability. --- Markov chain. --- Mathematical optimization. --- Matrix exponential. --- Measurement. --- Multi-agent system. --- Nash equilibrium. --- Natural number. --- Network topology. --- Nonnegative matrix. --- Notation. --- Observability. --- Optimal control. --- Optimization problem. --- Pairwise. --- Parameter. --- Path graph. --- Permutation matrix. --- Permutation. --- Positive semidefinite. --- Positive-definite matrix. --- Probability. --- Quantity. --- Random graph. --- Random variable. --- Rate of convergence. --- Requirement. --- Result. --- Robotics. --- Scientific notation. --- Sensor. --- Sign (mathematics). --- Simplicial complex. --- Special case. --- Spectral graph theory. --- Stochastic matrix. --- Strongly connected component. --- Subset. --- Summation. --- Supergraph. --- Symmetric matrix. --- Systems theory. --- Theorem. --- Theory. --- Unit interval. --- Upper and lower bounds. --- Variable (mathematics). --- Vector space. --- Without loss of generality.
Choose an application
Charles Favre and Thomas Gauthier present new mathematical research in the field of arithmetic dynamics. Specifically, the authors study one-dimensional algebraic families of pairs given by a polynomial with a marked point. Combining tools from arithmetic geometry and holomorphic dynamics, they prove an 'unlikely intersection' statement for such pairs, thereby demonstrating strong rigidity features for them. They further describe one-dimensional families in the moduli space of polynomials containing infinitely many postcritically finite parameters, proving the dynamical André-Oort conjecture for curves in this context, originally stated by Baker and DeMarco.
MATHEMATICS / Geometry / Algebraic. --- Affine plane. --- Affine space. --- Affine transformation. --- Algebraic closure. --- Algebraic curve. --- Algebraic equation. --- Algebraic extension. --- Algebraic surface. --- Algebraic variety. --- Algebraically closed field. --- Analysis. --- Analytic function. --- Analytic geometry. --- Approximation. --- Arithmetic dynamics. --- Asymmetric graph. --- Ball (mathematics). --- Bifurcation theory. --- Boundary (topology). --- Cantor set. --- Characterization (mathematics). --- Chebyshev polynomials. --- Coefficient. --- Combinatorics. --- Complex manifold. --- Complex number. --- Computation. --- Computer programming. --- Conjugacy class. --- Connected component (graph theory). --- Continuous function (set theory). --- Coprime integers. --- Correspondence theorem (group theory). --- Counting. --- Critical graph. --- Cubic function. --- Datasheet. --- Disk (mathematics). --- Divisor (algebraic geometry). --- Elliptic curve. --- Equation. --- Equidistribution theorem. --- Equivalence relation. --- Euclidean topology. --- Existential quantification. --- Fixed point (mathematics). --- Function space. --- Geometric (company). --- Graph (discrete mathematics). --- Hamiltonian mechanics. --- Hausdorff dimension. --- Hausdorff measure. --- Holomorphic function. --- Inequality (mathematics). --- Instance (computer science). --- Integer. --- Intermediate value theorem. --- Intersection (set theory). --- Inverse-square law. --- Irreducible component. --- Iteration. --- Jordan curve theorem. --- Julia set. --- Limit of a sequence. --- Line (geometry). --- Metric space. --- Moduli space. --- Moment (mathematics). --- Montel's theorem. --- P-adic number. --- Parameter. --- Pascal's Wager. --- Periodic point. --- Polynomial. --- Power series. --- Primitive polynomial (field theory). --- Projective line. --- Quotient ring. --- Rational number. --- Realizability. --- Renormalization. --- Riemann surface. --- Ring of integers. --- Scientific notation. --- Set (mathematics). --- Sheaf (mathematics). --- Sign (mathematics). --- Stone–Weierstrass theorem. --- Subharmonic function. --- Support (mathematics). --- Surjective function. --- Theorem. --- Theory. --- Topology. --- Transfer principle. --- Union (set theory). --- Unit disk. --- Variable (computer science). --- Variable (mathematics). --- Zariski topology. --- Polynomials. --- Dynamics. --- Geometry, Algebraic. --- Algebraic geometry --- Geometry --- Dynamical systems --- Kinetics --- Mathematics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Algebra --- Algebraic geometry. --- Mathematics.
Choose an application
Group theory and topology are closely related. The region of their interaction, combining the logical clarity of algebra with the depths of geometric intuition, is the subject of Combinatorial Group Theory and Topology. The work includes papers from a conference held in July 1984 at Alta Lodge, Utah.Contributors to the book include Roger Alperin, Hyman Bass, Max Benson, Joan S. Birman, Andrew J. Casson, Marshall Cohen, Donald J. Collins, Robert Craggs, Michael Dyer, Beno Eckmann, Stephen M. Gersten, Jane Gilman, Robert H. Gilman, Narain D. Gupta, John Hempel, James Howie, Roger Lyndon, Martin Lustig, Lee P. Neuwirth, Andrew J. Nicas, N. Patterson, John G. Ratcliffe, Frank Rimlinger, Caroline Series, John R. Stallings, C. W. Stark, and A. Royce Wolf.
Combinatorial group theory --- Topology --- Abelian group. --- Algebraic equation. --- Algebraic integer. --- Automorphism. --- Basis (linear algebra). --- Betti number. --- Cayley graph. --- Cayley–Hamilton theorem. --- Characteristic polynomial. --- Characteristic subgroup. --- Characterization (mathematics). --- Classifying space. --- Combinatorial group theory. --- Combinatorics. --- Commutative algebra. --- Commutative property. --- Commutator subgroup. --- Compactification (mathematics). --- Complement (set theory). --- Conformal map. --- Conjugacy class. --- Connected component (graph theory). --- Connectivity (graph theory). --- Coprime integers. --- Coset. --- Coxeter group. --- Cyclic group. --- Cyclic permutation. --- Degeneracy (mathematics). --- Dehn's lemma. --- Diagram (category theory). --- Dirac delta function. --- Disk (mathematics). --- Epimorphism. --- Equation. --- Euclidean group. --- Finite group. --- Finitely generated abelian group. --- Finitely generated group. --- Free abelian group. --- Free group. --- Freiheitssatz. --- Fuchsian group. --- Function (mathematics). --- Fundamental domain. --- Fundamental group. --- Fundamental lemma (Langlands program). --- G-module. --- General linear group. --- Generating set of a group. --- Geodesic. --- Graph (discrete mathematics). --- Graph of groups. --- Graph product. --- Group theory. --- Haken manifold. --- Harmonic analysis. --- Homological algebra. --- Homology (mathematics). --- Homomorphism. --- Homotopy. --- Hurwitz's theorem (number theory). --- Hyperbolic 3-manifold. --- Identity theorem. --- Inclusion map. --- Inequality (mathematics). --- Inner automorphism. --- Intersection (set theory). --- Intersection number (graph theory). --- Intersection number. --- Invertible matrix. --- Jacobian matrix and determinant. --- Knot theory. --- Limit point. --- Mapping class group. --- Mapping cone (homological algebra). --- Mathematical induction. --- Module (mathematics). --- Parity (mathematics). --- Poincaré conjecture. --- Prime number. --- Pullback (category theory). --- Quotient group. --- Representation theory. --- Residually finite group. --- Riemann surface. --- Seifert–van Kampen theorem. --- Separatrix (mathematics). --- Set theory. --- Simplicial complex. --- Sphere theorem (3-manifolds). --- Sphere theorem. --- Subgroup. --- Sylow theorems. --- Theorem. --- Topology. --- Union (set theory). --- Uniqueness theorem. --- Variable (mathematics). --- Word problem (mathematics).
Listing 1 - 5 of 5 |
Sort by
|