Listing 1 - 10 of 13 | << page >> |
Sort by
|
Choose an application
Fraccions contínues --- Geometria de nombres --- Teoria de nombres --- Aproximació diofàntica --- Sèries (Matemàtica) --- Processos infinits --- Algebra. --- Mathematics --- Mathematical analysis
Choose an application
This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The second edition now includes a geometric approach to Gauss Reduction Theory, classification of integer regular polygons and some further new subjects. Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.
Number theory --- Ordered algebraic structures --- Algebra --- Geometry --- Functional analysis --- Numerical approximation theory --- Discrete mathematics --- Geology. Earth sciences --- Computer science --- algebra --- discrete wiskunde --- informatica --- wiskunde --- getallenleer --- geofysica --- geometrie --- Algebra. --- Fraccions contínues --- Geometria de nombres
Choose an application
This problem book gathers together 15 problem sets on analytic number theory that can be profitably approached by anyone from advanced high school students to those pursuing graduate studies. It emerged from a 5-week course taught by the first author as part of the 2019 Ross/Asia Mathematics Program held from July 7 to August 9 in Zhenjiang, China. While it is recommended that the reader has a solid background in mathematical problem solving (as from training for mathematical contests), no possession of advanced subject-matter knowledge is assumed. Most of the solutions require nothing more than elementary number theory and a good grasp of calculus. Problems touch at key topics like the value-distribution of arithmetic functions, the distribution of prime numbers, the distribution of squares and nonsquares modulo a prime number, Dirichlet's theorem on primes in arithmetic progressions, and more. This book is suitable for any student with a special interest in developing problem-solving skills in analytic number theory. It will be an invaluable aid to lecturers and students as a supplementary text for introductory Analytic Number Theory courses at both the undergraduate and graduate level.
Number theory. --- Mathematics—Study and teaching . --- Number Theory. --- Mathematics Education. --- Number study --- Numbers, Theory of --- Algebra --- Mathematics --- Teoria de nombres --- Teoria dels nombres --- Àlgebra --- Anàlisi diofàntica --- Arrels de la unitat --- Congruències i residus --- Conjectura de Catalan --- Darrer teorema de Fermat --- Formes automorfes --- Formes quadràtiques --- Fórmula de traça de Selberg --- Funcions aritmètiques --- Funcions L --- Funcions modulars --- Funcions recursives --- Funcions zeta --- Geometria algebraica aritmètica --- Geometria de nombres --- Grups modulars --- Lleis de reciprocitat --- Nombres de Fermat --- Nombres ordinals --- Nombres p-àdics --- Nombres transfinits --- Numeració --- Particions (Matemàtica) --- Quadrats màgics --- Sedàs (Matemàtica) --- Teorema de Fermat --- Teorema de Gödel --- Teoria algebraica de nombres --- Teoria de Galois --- Cossos algebraics
Choose an application
This book discusses the p-adic modular forms, the eigencurve that parameterize them, and the p-adic L-functions one can associate to them. These theories and their generalizations to automorphic forms for group of higher ranks are of fundamental importance in number theory. For graduate students and newcomers to this field, the book provides a solid introduction to this highly active area of research. For experts, it will offer the convenience of collecting into one place foundational definitions and theorems with complete and self-contained proofs. Written in an engaging and educational style, the book also includes exercises and provides their solution.
Number theory. --- Number Theory. --- Number study --- Numbers, Theory of --- Algebra --- Teoria de nombres --- Teoria dels nombres --- Àlgebra --- Anàlisi diofàntica --- Arrels de la unitat --- Congruències i residus --- Conjectura de Catalan --- Darrer teorema de Fermat --- Formes automorfes --- Formes quadràtiques --- Fórmula de traça de Selberg --- Funcions aritmètiques --- Funcions L --- Funcions modulars --- Funcions recursives --- Funcions zeta --- Geometria algebraica aritmètica --- Geometria de nombres --- Grups modulars --- Lleis de reciprocitat --- Nombres de Fermat --- Nombres ordinals --- Nombres p-àdics --- Nombres transfinits --- Numeració --- Particions (Matemàtica) --- Quadrats màgics --- Sedàs (Matemàtica) --- Teorema de Fermat --- Teorema de Gödel --- Teoria algebraica de nombres --- Teoria de Galois --- Cossos algebraics
Choose an application
Teoria de nombres --- Teoria dels nombres --- Àlgebra --- Anàlisi diofàntica --- Arrels de la unitat --- Congruències i residus --- Conjectura de Catalan --- Darrer teorema de Fermat --- Formes automorfes --- Formes quadràtiques --- Fórmula de traça de Selberg --- Funcions aritmètiques --- Funcions L --- Funcions modulars --- Funcions recursives --- Funcions zeta --- Geometria algebraica aritmètica --- Geometria de nombres --- Grups modulars --- Lleis de reciprocitat --- Nombres de Fermat --- Nombres ordinals --- Nombres p-àdics --- Nombres transfinits --- Numeració --- Particions (Matemàtica) --- Quadrats màgics --- Sedàs (Matemàtica) --- Teorema de Fermat --- Teorema de Gödel --- Teoria algebraica de nombres --- Teoria de Galois --- Cossos algebraics --- Number theory. --- Number study --- Numbers, Theory of --- Algebra
Choose an application
Teoria de nombres --- Dones matemàtiques --- Matemàtiques --- Científiques --- Matemàtics --- Teoria dels nombres --- Àlgebra --- Anàlisi diofàntica --- Arrels de la unitat --- Congruències i residus --- Conjectura de Catalan --- Darrer teorema de Fermat --- Formes automorfes --- Formes quadràtiques --- Fórmula de traça de Selberg --- Funcions aritmètiques --- Funcions L --- Funcions modulars --- Funcions recursives --- Funcions zeta --- Geometria algebraica aritmètica --- Geometria de nombres --- Grups modulars --- Lleis de reciprocitat --- Nombres de Fermat --- Nombres ordinals --- Nombres p-àdics --- Nombres transfinits --- Numeració --- Particions (Matemàtica) --- Quadrats màgics --- Sedàs (Matemàtica) --- Teorema de Fermat --- Teorema de Gödel --- Teoria algebraica de nombres --- Teoria de Galois --- Cossos algebraics --- Number theory
Choose an application
This textbook offers a unique exploration of analytic number theory that is focused on explicit and realistic numerical bounds. By giving precise proofs in simplified settings, the author strategically builds practical tools and insights for exploring the behavior of arithmetical functions. An active learning style is encouraged across nearly three hundred exercises, making this an indispensable resource for both students and instructors. Designed to allow readers several different pathways to progress from basic notions to active areas of research, the book begins with a study of arithmetic functions and notions of arithmetical interest. From here, several guided “walks” invite readers to continue, offering explorations along three broad themes: the convolution method, the Levin–Faĭnleĭb theorem, and the Mellin transform. Having followed any one of the walks, readers will arrive at “higher ground”, where they will find opportunities for extensions and applications, such as the Selberg formula, Exponential sums with arithmetical coefficients, and the Large Sieve Inequality. Methodology is emphasized throughout, with frequent opportunities to explore numerically using computer algebra packages Pari/GP and Sage. Excursions in Multiplicative Number Theory is ideal for graduate students and upper-level undergraduate students who are familiar with the fundamentals of analytic number theory. It will also appeal to researchers in mathematics and engineering interested in experimental techniques in this active area.
Teoria de nombres --- Multiplicació --- Multiplication. --- Arithmetic --- Ready-reckoners --- Aritmètica --- Teoria dels nombres --- Àlgebra --- Anàlisi diofàntica --- Arrels de la unitat --- Congruències i residus --- Conjectura de Catalan --- Darrer teorema de Fermat --- Formes automorfes --- Formes quadràtiques --- Fórmula de traça de Selberg --- Funcions aritmètiques --- Funcions L --- Funcions modulars --- Funcions recursives --- Funcions zeta --- Geometria algebraica aritmètica --- Geometria de nombres --- Grups modulars --- Lleis de reciprocitat --- Nombres de Fermat --- Nombres ordinals --- Nombres p-àdics --- Nombres transfinits --- Numeració --- Particions (Matemàtica) --- Quadrats màgics --- Sedàs (Matemàtica) --- Teorema de Fermat --- Teorema de Gödel --- Teoria algebraica de nombres --- Teoria de Galois --- Cossos algebraics --- Number theory. --- Number Theory. --- Number study --- Numbers, Theory of --- Algebra
Choose an application
Number theory --- Teoria de nombres --- Dones matemàtiques --- Teoria dels nombres --- Àlgebra --- Anàlisi diofàntica --- Arrels de la unitat --- Congruències i residus --- Conjectura de Catalan --- Darrer teorema de Fermat --- Formes automorfes --- Formes quadràtiques --- Fórmula de traça de Selberg --- Funcions aritmètiques --- Funcions L --- Funcions modulars --- Funcions recursives --- Funcions zeta --- Geometria algebraica aritmètica --- Geometria de nombres --- Grups modulars --- Lleis de reciprocitat --- Nombres de Fermat --- Nombres ordinals --- Nombres p-àdics --- Nombres transfinits --- Numeració --- Particions (Matemàtica) --- Quadrats màgics --- Sedàs (Matemàtica) --- Teorema de Fermat --- Teorema de Gödel --- Teoria algebraica de nombres --- Teoria de Galois --- Cossos algebraics --- Matemàtiques --- Científiques --- Matemàtics
Choose an application
Number theory. --- Geometria algebraica aritmètica --- Teoria de nombres --- Number study --- Numbers, Theory of --- Algebra --- Teoria dels nombres --- Àlgebra --- Anàlisi diofàntica --- Arrels de la unitat --- Congruències i residus --- Conjectura de Catalan --- Darrer teorema de Fermat --- Formes automorfes --- Formes quadràtiques --- Fórmula de traça de Selberg --- Funcions aritmètiques --- Funcions L --- Funcions modulars --- Funcions recursives --- Funcions zeta --- Geometria de nombres --- Grups modulars --- Lleis de reciprocitat --- Nombres de Fermat --- Nombres ordinals --- Nombres p-àdics --- Nombres transfinits --- Numeració --- Particions (Matemàtica) --- Quadrats màgics --- Sedàs (Matemàtica) --- Teorema de Fermat --- Teorema de Gödel --- Teoria algebraica de nombres --- Teoria de Galois --- Cossos algebraics --- Geometria algèbrica aritmètica --- Geometria diofàntica --- Geometria algebraica --- Punts racionals (Geometria) --- Varietats de Shimura
Choose an application
Number theory --- Geometry --- Computer science --- landmeetkunde --- toegepaste informatica --- computers --- getallenleer --- computerkunde --- Number theory. --- Number study --- Numbers, Theory of --- Algebra --- Geometria algebraica aritmètica --- Teoria de nombres --- Teoria dels nombres --- Àlgebra --- Anàlisi diofàntica --- Arrels de la unitat --- Congruències i residus --- Conjectura de Catalan --- Darrer teorema de Fermat --- Formes automorfes --- Formes quadràtiques --- Fórmula de traça de Selberg --- Funcions aritmètiques --- Funcions L --- Funcions modulars --- Funcions recursives --- Funcions zeta --- Geometria de nombres --- Grups modulars --- Lleis de reciprocitat --- Nombres de Fermat --- Nombres ordinals --- Nombres p-àdics --- Nombres transfinits --- Numeració --- Particions (Matemàtica) --- Quadrats màgics --- Sedàs (Matemàtica) --- Teorema de Fermat --- Teorema de Gödel --- Teoria algebraica de nombres --- Teoria de Galois --- Cossos algebraics --- Geometria algèbrica aritmètica --- Geometria diofàntica --- Geometria algebraica --- Punts racionals (Geometria) --- Varietats de Shimura
Listing 1 - 10 of 13 | << page >> |
Sort by
|