Listing 1 - 6 of 6 |
Sort by
|
Choose an application
The present Special Issue of Symmetry is devoted to two important areas of global Riemannian geometry, namely submanifold theory and the geometry of Lie groups and homogeneous spaces. Submanifold theory originated from the classical geometry of curves and surfaces. Homogeneous spaces are manifolds that admit a transitive Lie group action, historically related to F. Klein's Erlangen Program and S. Lie's idea to use continuous symmetries in studying differential equations. In this Special Issue, we provide a collection of papers that not only reflect some of the latest advancements in both areas, but also highlight relations between them and the use of common techniques. Applications to other areas of mathematics are also considered.
warped products --- vector equilibrium problem --- Laplace operator --- cost functional --- pointwise 1-type spherical Gauss map --- inequalities --- homogeneous manifold --- finite-type --- magnetic curves --- Sasaki-Einstein --- evolution dynamics --- non-flat complex space forms --- hyperbolic space --- compact Riemannian manifolds --- maximum principle --- submanifold integral --- Clifford torus --- D’Atri space --- 3-Sasakian manifold --- links --- isoparametric hypersurface --- Einstein manifold --- real hypersurfaces --- Kähler 2 --- *-Weyl curvature tensor --- homogeneous geodesic --- optimal control --- formality --- hadamard manifolds --- Sasakian Lorentzian manifold --- generalized convexity --- isospectral manifolds --- Legendre curves --- geodesic chord property --- spherical Gauss map --- pointwise bi-slant immersions --- mean curvature --- weakly efficient pareto points --- geodesic symmetries --- homogeneous Finsler space --- orbifolds --- slant curves --- hypersphere --- ??-space --- k-D’Atri space --- *-Ricci tensor --- homogeneous space
Choose an application
Although scientific computing is very often associated with numeric computations, the use of computer algebra methods in scientific computing has obtained considerable attention in the last two decades. Computer algebra methods are especially suitable for parametric analysis of the key properties of systems arising in scientific computing. The expression-based computational answers generally provided by these methods are very appealing as they directly relate properties to parameters and speed up testing and tuning of mathematical models through all their possible behaviors. This book contains 8 original research articles dealing with a broad range of topics, ranging from algorithms, data structures, and implementation techniques for high-performance sparse multivariate polynomial arithmetic over the integers and rational numbers over methods for certifying the isolated zeros of polynomial systems to computer algebra problems in quantum computing.
superposition --- SU(2) --- pseudo-remainder --- interval methods --- sparse polynomials --- element order --- Henneberg-type minimal surface --- timelike axis --- combinatorial decompositions --- sparse data structures --- mutually unbiased bases --- invariant surfaces --- projective special unitary group --- Minkowski 4-space --- free resolutions --- Dini-type helicoidal hypersurface --- linearity --- integrability --- Galois rings --- minimum point --- entanglement --- degree --- pseudo-division --- computational algebra --- polynomial arithmetic --- projective special linear group --- normal form --- Galois fields --- Gauss map --- implicit equation --- number of elements of the same order --- Weierstrass representation --- Lotka–Volterra system --- isolated zeros --- polynomial modules --- over-determined polynomial system --- simple Kn-group --- sum of squares --- four-dimensional space
Choose an application
The aim of this book is to study harmonic maps, minimal and parallel mean curvature immersions in the presence of symmetry. In several instances, the latter permits reduction of the original elliptic variational problem to the qualitative study of certain ordinary differential equations: the authors' primary objective is to provide representative examples to illustrate these reduction methods and their associated analysis with geometric and topological applications. The material covered by the book displays a solid interplay involving geometry, analysis and topology: in particular, it includes a basic presentation of 1-cohomogeneous equivariant differential geometry and of the theory of harmonic maps between spheres.
Cartes harmoniques --- Harmonic maps --- Harmonische kaarten --- Immersies (Wiskunde) --- Immersions (Mathematics) --- Immersions (Mathématiques) --- Harmonic maps. --- Differential equations, Elliptic --- Applications harmoniques --- Immersions (Mathematiques) --- Équations différentielles elliptiques --- Numerical solutions. --- Solutions numériques --- Équations différentielles elliptiques --- Solutions numériques --- Differential equations [Elliptic] --- Numerical solutions --- Embeddings (Mathematics) --- Manifolds (Mathematics) --- Mappings (Mathematics) --- Maps, Harmonic --- Arc length. --- Catenary. --- Clifford algebra. --- Codimension. --- Coefficient. --- Compact space. --- Complex projective space. --- Connected sum. --- Constant curvature. --- Corollary. --- Covariant derivative. --- Curvature. --- Cylinder (geometry). --- Degeneracy (mathematics). --- Diagram (category theory). --- Differential equation. --- Differential geometry. --- Elliptic partial differential equation. --- Embedding. --- Energy functional. --- Equation. --- Existence theorem. --- Existential quantification. --- Fiber bundle. --- Gauss map. --- Geometry and topology. --- Geometry. --- Gravitational field. --- Harmonic map. --- Hyperbola. --- Hyperplane. --- Hypersphere. --- Hypersurface. --- Integer. --- Iterative method. --- Levi-Civita connection. --- Lie group. --- Mathematics. --- Maximum principle. --- Mean curvature. --- Normal (geometry). --- Numerical analysis. --- Open set. --- Ordinary differential equation. --- Parabola. --- Quadratic form. --- Sign (mathematics). --- Special case. --- Stiefel manifold. --- Submanifold. --- Suggestion. --- Surface of revolution. --- Symmetry. --- Tangent bundle. --- Theorem. --- Vector bundle. --- Vector space. --- Vertical tangent. --- Winding number. --- Differential equations, Elliptic - Numerical solutions
Choose an application
The present book contains 14 papers published in the Special Issue “Differential Geometry” of the journal Mathematics. They represent a selection of the 30 submissions. This book covers a variety of both classical and modern topics in differential geometry. We mention properties of both rectifying and affine curves, the geometry of hypersurfaces, angles in Minkowski planes, Euclidean submanifolds, differential operators and harmonic forms on Riemannian manifolds, complex manifolds, contact manifolds (in particular, Sasakian and trans-Sasakian manifolds), curvature invariants, and statistical manifolds and their submanifolds (in particular, Hessian manifolds). We wish to mention that among the authors, there are both well-known geometers and young researchers. The authors are from countries with a tradition in differential geometry: Belgium, China, Greece, Japan, Korea, Poland, Romania, Spain, Turkey, and United States of America. Many of these papers were already cited by other researchers in their articles. This book is useful for specialists in differential geometry, operator theory, physics, and information geometry as well as graduate students in mathematics.
statistical structure --- constant ratio submanifolds --- Euclidean submanifold --- framed helices --- Sasakian statistical manifold --- L2-harmonic forms --- Hodge–Laplacian --- complete connection --- concircular vector field --- cylindrical hypersurface --- k-th generalized Tanaka–Webster connection --- Casorati curvature --- symplectic curves --- generalized 1-type Gauss map --- rectifying submanifold --- manifold with singularity --- ruled surface --- Minkowski plane --- compact complex surfaces --- conjugate connection --- T-submanifolds --- L2-Stokes theorem --- inextensible flow --- shape operator --- generalized normalized ?-Casorati curvature --- Sasakian manifold --- centrodes --- circular helices --- non-flat complex space form --- invariant --- Frenet frame --- Darboux frame --- trans-Sasakian 3-manifold --- singular points --- symplectic curvatures --- Kähler–Einstein metrics --- conjugate symmetric statistical structure --- sectional ?-curvature --- circular rectifying curves --- developable surface --- capacity --- Ricci soliton --- Reeb flow symmetry --- Minkowskian pseudo-angle --- conical surface --- lie derivative --- position vector field --- pinching of the curvatures --- Hessian manifolds --- Minkowskian angle --- Hessian sectional curvature --- Minkowskian length --- lightlike surface --- affine sphere --- concurrent vector field --- slant --- affine hypersurface --- anti-invariant --- statistical manifolds --- Ricci operator --- C-Bochner tensor --- Ricci curvature --- real hypersurface --- scalar curvature --- framed rectifying curves
Choose an application
Outer billiards is a basic dynamical system defined relative to a convex shape in the plane. B. H. Neumann introduced this system in the 1950's, and J. Moser popularized it as a toy model for celestial mechanics. All along, the so-called Moser-Neumann question has been one of the central problems in the field. This question asks whether or not one can have an outer billiards system with an unbounded orbit. The Moser-Neumann question is an idealized version of the question of whether, because of small disturbances in its orbit, the Earth can break out of its orbit and fly away from the Sun. In Outer Billiards on Kites, Richard Schwartz presents his affirmative solution to the Moser-Neumann problem. He shows that an outer billiards system can have an unbounded orbit when defined relative to any irrational kite. A kite is a quadrilateral having a diagonal that is a line of bilateral symmetry. The kite is irrational if the other diagonal divides the quadrilateral into two triangles whose areas are not rationally related. In addition to solving the basic problem, Schwartz relates outer billiards on kites to such topics as Diophantine approximation, the modular group, self-similar sets, polytope exchange maps, profinite completions of the integers, and solenoids--connections that together allow for a fairly complete analysis of the dynamical system.
Hyperbolic spaces. --- Singularities (Mathematics) --- Transformations (Mathematics) --- Geometry, Plane. --- Plane geometry --- Algorithms --- Differential invariants --- Geometry, Differential --- Geometry, Algebraic --- Hyperbolic complex manifolds --- Manifolds, Hyperbolic complex --- Spaces, Hyperbolic --- Geometry, Non-Euclidean --- Abelian group. --- Automorphism. --- Big O notation. --- Bijection. --- Binary number. --- Bisection. --- Borel set. --- C0. --- Calculation. --- Cantor set. --- Cartesian coordinate system. --- Combination. --- Compass-and-straightedge construction. --- Congruence subgroup. --- Conjecture. --- Conjugacy class. --- Continuity equation. --- Convex lattice polytope. --- Convex polytope. --- Coprime integers. --- Counterexample. --- Cyclic group. --- Diameter. --- Diophantine approximation. --- Diophantine equation. --- Disjoint sets. --- Disjoint union. --- Division by zero. --- Embedding. --- Equation. --- Equivalence class. --- Ergodic theory. --- Ergodicity. --- Factorial. --- Fiber bundle. --- Fibonacci number. --- Fundamental domain. --- Gauss map. --- Geometry. --- Half-integer. --- Homeomorphism. --- Hyperbolic geometry. --- Hyperplane. --- Ideal triangle. --- Intersection (set theory). --- Interval exchange transformation. --- Inverse function. --- Inverse limit. --- Isometry group. --- Lattice (group). --- Limit set. --- Line segment. --- Linear algebra. --- Linear function. --- Line–line intersection. --- Main diagonal. --- Modular group. --- Monotonic function. --- Multiple (mathematics). --- Orthant. --- Outer billiard. --- Parallelogram. --- Parameter. --- Partial derivative. --- Penrose tiling. --- Permutation. --- Piecewise. --- Polygon. --- Polyhedron. --- Polytope. --- Product topology. --- Projective geometry. --- Rectangle. --- Renormalization. --- Rhombus. --- Right angle. --- Rotational symmetry. --- Sanity check. --- Scientific notation. --- Semicircle. --- Sign (mathematics). --- Special case. --- Square root of 2. --- Subsequence. --- Summation. --- Symbolic dynamics. --- Symmetry group. --- Tangent. --- Tetrahedron. --- Theorem. --- Toy model. --- Translational symmetry. --- Trapezoid. --- Triangle group. --- Triangle inequality. --- Two-dimensional space. --- Upper and lower bounds. --- Upper half-plane. --- Without loss of generality. --- Yair Minsky.
Choose an application
This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristic and requiring of the reader only basic knowledge of algebra and geometry. The special properties that a curve over a finite field can have are then discussed. The geometrical theory of linear series is used to find estimates for the number of rational points on a curve, following the theory of Stöhr and Voloch. The approach of Hasse and Weil via zeta functions is explained, and then attention turns to more advanced results: a state-of-the-art introduction to maximal curves over finite fields is provided; a comprehensive account is given of the automorphism group of a curve; and some applications to coding theory and finite geometry are described. The book includes many examples and exercises. It is an indispensable resource for researchers and the ideal textbook for graduate students.
Curves, Algebraic. --- Finite fields (Algebra) --- Modular fields (Algebra) --- Algebra, Abstract --- Algebraic fields --- Galois theory --- Modules (Algebra) --- Algebraic curves --- Algebraic varieties --- Abelian group. --- Abelian variety. --- Affine plane. --- Affine space. --- Affine variety. --- Algebraic closure. --- Algebraic curve. --- Algebraic equation. --- Algebraic extension. --- Algebraic function. --- Algebraic geometry. --- Algebraic integer. --- Algebraic number field. --- Algebraic number theory. --- Algebraic number. --- Algebraic variety. --- Algebraically closed field. --- Applied mathematics. --- Automorphism. --- Birational invariant. --- Characteristic exponent. --- Classification theorem. --- Clifford's theorem. --- Combinatorics. --- Complex number. --- Computation. --- Cyclic group. --- Cyclotomic polynomial. --- Degeneracy (mathematics). --- Degenerate conic. --- Divisor (algebraic geometry). --- Divisor. --- Dual curve. --- Dual space. --- Elliptic curve. --- Equation. --- Fermat curve. --- Finite field. --- Finite geometry. --- Finite group. --- Formal power series. --- Function (mathematics). --- Function field. --- Fundamental theorem. --- Galois extension. --- Galois theory. --- Gauss map. --- General position. --- Generic point. --- Geometry. --- Homogeneous polynomial. --- Hurwitz's theorem. --- Hyperelliptic curve. --- Hyperplane. --- Identity matrix. --- Inequality (mathematics). --- Intersection number (graph theory). --- Intersection number. --- J-invariant. --- Line at infinity. --- Linear algebra. --- Linear map. --- Mathematical induction. --- Mathematics. --- Menelaus' theorem. --- Modular curve. --- Natural number. --- Number theory. --- Parity (mathematics). --- Permutation group. --- Plane curve. --- Point at infinity. --- Polar curve. --- Polygon. --- Polynomial. --- Power series. --- Prime number. --- Projective plane. --- Projective space. --- Quadratic transformation. --- Quadric. --- Resolution of singularities. --- Riemann hypothesis. --- Scalar multiplication. --- Scientific notation. --- Separable extension. --- Separable polynomial. --- Sign (mathematics). --- Singular point of a curve. --- Special case. --- Subgroup. --- Sylow theorems. --- System of linear equations. --- Tangent. --- Theorem. --- Transcendence degree. --- Upper and lower bounds. --- Valuation ring. --- Variable (mathematics). --- Vector space.
Listing 1 - 6 of 6 |
Sort by
|