Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Genomics --- Biological systems --- Genome research --- Genomes --- Molecular genetics --- Mathematical models. --- Research --- United States. --- Genomic Science Program (U.S.) --- DOE Genomics:GTL
Choose an application
Since the turn of the last century when the field of catalysis was born, iron and cobalt have been key players in numerous catalysis processes. These metals, due to their ability to activate CO and CH, haev a major economic impact worldwide. Several industrial processes and synthetic routes use these metals: biomass-to-liquids (BTL), coal-to-liquids (CTL), natural gas-to-liquids (GTL), water-gas-shift, alcohol synthesis, alcohol steam reforming, polymerization processes, cross-coupling reactions, and photocatalyst activated reactions. A vast number of materials are produced from these processes, including oil, lubricants, waxes, diesel and jet fuels, hydrogen (e.g., fuel cell applications), gasoline, rubbers, plastics, alcohols, pharmaceuticals, agrochemicals, feed-stock chemicals, and other alternative materials. However, given the true complexities of the variables involved in these processes, many key mechanistic issues are still not fully defined or understood. This Special Issue of Catalysis will be a collaborative effort to combine current catalysis research on these metals from experimental and theoretical perspectives on both heterogeneous and homogeneous catalysts. We welcome contributions from the catalysis community on catalyst characterization, kinetics, reaction mechanism, reactor development, theoretical modeling, and surface science.
Technology: general issues --- polynuclear cobalt complexes --- water oxidation --- artificial photosynthesis --- Fe/Cu catalytic-ceramic-filler --- nitrobenzene compounds wastewater --- pilot-scale test --- biodegradability-improvement --- Fischer-Tropsch synthesis (FTS) --- oxygenates --- iron --- cobalt --- ruthenium --- Anderson-Schulz-Flory (ASF) distribution --- Fischer-Tropsch --- catalyst deactivation --- potassium --- liquid-phase catalytic oxidation --- limonene --- carvone --- zeolitic imidazolate frameworks --- Fischer-Tropsch synthesis --- chain growth --- CO insertion --- kinetic isotope effect --- DFT --- hydrogenation of CO --- iron catalysts --- syngas --- monometallic iron catalysts --- Fischer-Tropsch product distribution --- reaction mechanism --- catalysis --- process synthesis and design --- energy conversion --- iron-cobalt bimetal catalysts --- electrochemical application --- hydrogen evolution --- oxygen evolution --- oxygen reduction --- RWGS --- iron oxides --- CO2 conversion --- gas-switching --- Synthetic natural gas (SNG) --- Cobalt --- Iron --- C2-C4 hydrocarbons --- paraffin ratio --- asymmetric hydrogenation --- homogeneous catalysis --- structural design --- conformational analysis --- NMR spectroscopy --- alumina --- strong metal support interactions --- CO2 hydrogenation --- pressure --- temperature --- cobalt carboxylate --- coating --- autoxidation --- alkyd --- siccative --- polymerization --- manganese --- Fischer-Tropsch synthesis --- modeling --- kinetics --- Co --- Al2O3 --- Pt --- Cd --- In --- Sn --- hydrocarbon selectivity --- synergic effect --- GTL --- additives --- reducibility --- XANES --- mesoporous silica based catalysts --- kinetic studies --- 3-D printed microchannel microreactor --- cobalt-nickel nanoparticles --- cobalt-nickel alloys --- nickel --- HAADF-STEM --- TPR-EXAFS/XANES --- CO hydrogenation --- CSTR --- polynuclear cobalt complexes --- water oxidation --- artificial photosynthesis --- Fe/Cu catalytic-ceramic-filler --- nitrobenzene compounds wastewater --- pilot-scale test --- biodegradability-improvement --- Fischer-Tropsch synthesis (FTS) --- oxygenates --- iron --- cobalt --- ruthenium --- Anderson-Schulz-Flory (ASF) distribution --- Fischer-Tropsch --- catalyst deactivation --- potassium --- liquid-phase catalytic oxidation --- limonene --- carvone --- zeolitic imidazolate frameworks --- Fischer-Tropsch synthesis --- chain growth --- CO insertion --- kinetic isotope effect --- DFT --- hydrogenation of CO --- iron catalysts --- syngas --- monometallic iron catalysts --- Fischer-Tropsch product distribution --- reaction mechanism --- catalysis --- process synthesis and design --- energy conversion --- iron-cobalt bimetal catalysts --- electrochemical application --- hydrogen evolution --- oxygen evolution --- oxygen reduction --- RWGS --- iron oxides --- CO2 conversion --- gas-switching --- Synthetic natural gas (SNG) --- Cobalt --- Iron --- C2-C4 hydrocarbons --- paraffin ratio --- asymmetric hydrogenation --- homogeneous catalysis --- structural design --- conformational analysis --- NMR spectroscopy --- alumina --- strong metal support interactions --- CO2 hydrogenation --- pressure --- temperature --- cobalt carboxylate --- coating --- autoxidation --- alkyd --- siccative --- polymerization --- manganese --- Fischer-Tropsch synthesis --- modeling --- kinetics --- Co --- Al2O3 --- Pt --- Cd --- In --- Sn --- hydrocarbon selectivity --- synergic effect --- GTL --- additives --- reducibility --- XANES --- mesoporous silica based catalysts --- kinetic studies --- 3-D printed microchannel microreactor --- cobalt-nickel nanoparticles --- cobalt-nickel alloys --- nickel --- HAADF-STEM --- TPR-EXAFS/XANES --- CO hydrogenation --- CSTR
Choose an application
For at least six hundred million years, life has been a fascinating laboratory of crystallization, referred to as biomineralization. During this huge lapse of time, many organisms from diverse phyla have developed the capability to precipitate various types of minerals, exploring distinctive pathways for building sophisticated structural architectures for different purposes. The Darwinian exploration was performed by trial and error, but the success in terms of complexity and efficiency is evident. Understanding the strategies that those organisms employ for regulating the nucleation, growth, and assembly of nanocrystals to build these sophisticated devices is an intellectual challenge and a source of inspiration in fields as diverse as materials science, nanotechnology, and biomedicine. However, “Biological Crystallization” is a broader topic that includes biomineralization, but also the laboratory crystallization of biological compounds such as macromolecules, carbohydrates, or lipids, and the synthesis and fabrication of biomimetic materials by different routes. This Special Issue collects 15 contributions ranging from biological and biomimetic crystallization of calcium carbonate, calcium phosphate, and silica-carbonate self-assembled materials to the crystallization of biological macromolecules. Special attention has been paid to the fundamental phenomena of crystallization (nucleation and growth), and the applications of the crystals in biomedicine, environment, and materials science.
chitosan --- Csep1p --- bond selection during protein crystallization --- bioremediation --- education --- reductants --- heavy metals --- biomimetic crystallization --- MTT assay --- protein crystallization --- drug discovery --- optimization --- polymyxin resistance --- lysozyme --- ependymin-related protein (EPDR) --- equilibration between crystal bond and destructive energies --- barium carbonate --- dyes --- microseed matrix screening --- nanoapatites --- colistin resistance --- Haloalkane dehalogenase --- diffusion --- polyacrylic acid --- random microseeding --- protein ‘affinity’ to water --- insulin --- protein crystal nucleation --- agarose --- lithium ions --- ependymin (EPN) --- {00.1} calcite --- seeding --- Campylobacter consisus --- metallothioneins --- Crohn’s disease --- balance between crystal bond energy and destructive surface energies --- color change --- microbially induced calcite precipitation (MICP) --- crystallization of macromolecules --- crystallization --- calcein --- MCR-1 --- Cry protein crystals --- L-tryptophan --- circular dichroism --- crystal violet --- nanocomposites --- halide-binding site --- calcium carbonate --- PCDA --- ultrasonic irradiation --- adsorption --- biochemical aspects of the protein crystal nucleation --- GTL-16 cells --- proteinase k --- neutron protein crystallography --- classical and two-step crystal nucleation mechanisms --- thermodynamic and energetic approach --- heavy metal contamination --- N-acetyl-D-glucosamine --- crystallization in solution flow --- solubility --- biomorphs --- droplet array --- biomimetic materials --- ferritin --- biomineralization --- wastewater treatment --- H3O+ --- silica --- graphene --- supersaturation dependence of the crystal nucleus size --- pyrrole --- micro-crystals --- nucleation --- crystallography --- mammalian ependymin-related protein (MERP) --- high-throughput --- vaterite transformation --- gradients --- materials science --- bioprecipitation --- biomedicine --- human carbonic anhydrase IX --- protein crystal nucleation in pores --- growth --- crystal growth
Choose an application
Since the turn of the last century when the field of catalysis was born, iron and cobalt have been key players in numerous catalysis processes. These metals, due to their ability to activate CO and CH, haev a major economic impact worldwide. Several industrial processes and synthetic routes use these metals: biomass-to-liquids (BTL), coal-to-liquids (CTL), natural gas-to-liquids (GTL), water-gas-shift, alcohol synthesis, alcohol steam reforming, polymerization processes, cross-coupling reactions, and photocatalyst activated reactions. A vast number of materials are produced from these processes, including oil, lubricants, waxes, diesel and jet fuels, hydrogen (e.g., fuel cell applications), gasoline, rubbers, plastics, alcohols, pharmaceuticals, agrochemicals, feed-stock chemicals, and other alternative materials. However, given the true complexities of the variables involved in these processes, many key mechanistic issues are still not fully defined or understood. This Special Issue of Catalysis will be a collaborative effort to combine current catalysis research on these metals from experimental and theoretical perspectives on both heterogeneous and homogeneous catalysts. We welcome contributions from the catalysis community on catalyst characterization, kinetics, reaction mechanism, reactor development, theoretical modeling, and surface science.
Technology: general issues --- polynuclear cobalt complexes --- water oxidation --- artificial photosynthesis --- Fe/Cu catalytic-ceramic-filler --- nitrobenzene compounds wastewater --- pilot-scale test --- biodegradability-improvement --- Fischer–Tropsch synthesis (FTS) --- oxygenates --- iron --- cobalt --- ruthenium --- Anderson-Schulz-Flory (ASF) distribution --- Fischer–Tropsch --- catalyst deactivation --- potassium --- liquid-phase catalytic oxidation --- limonene --- carvone --- zeolitic imidazolate frameworks --- Fischer-Tropsch synthesis --- chain growth --- CO insertion --- kinetic isotope effect --- DFT --- hydrogenation of CO --- iron catalysts --- syngas --- monometallic iron catalysts --- Fischer–Tropsch product distribution --- reaction mechanism --- catalysis --- process synthesis and design --- energy conversion --- iron–cobalt bimetal catalysts --- electrochemical application --- hydrogen evolution --- oxygen evolution --- oxygen reduction --- RWGS --- iron oxides --- CO2 conversion --- gas-switching --- Synthetic natural gas (SNG) --- Cobalt --- Iron --- C2–C4 hydrocarbons --- paraffin ratio --- asymmetric hydrogenation --- homogeneous catalysis --- structural design --- conformational analysis --- NMR spectroscopy --- alumina --- strong metal support interactions --- CO2 hydrogenation --- pressure --- temperature --- cobalt carboxylate --- coating --- autoxidation --- alkyd --- siccative --- polymerization --- manganese --- Fischer–Tropsch synthesis --- modeling --- kinetics --- Co --- Al2O3 --- Pt --- Cd --- In --- Sn --- hydrocarbon selectivity --- synergic effect --- GTL --- additives --- reducibility --- XANES --- mesoporous silica based catalysts --- kinetic studies --- 3-D printed microchannel microreactor --- cobalt–nickel nanoparticles --- cobalt–nickel alloys --- nickel --- HAADF-STEM --- TPR-EXAFS/XANES --- CO hydrogenation --- CSTR --- n/a --- Fischer-Tropsch synthesis (FTS) --- Fischer-Tropsch --- Fischer-Tropsch product distribution --- iron-cobalt bimetal catalysts --- C2-C4 hydrocarbons --- cobalt-nickel nanoparticles --- cobalt-nickel alloys
Choose an application
Since the turn of the last century when the field of catalysis was born, iron and cobalt have been key players in numerous catalysis processes. These metals, due to their ability to activate CO and CH, haev a major economic impact worldwide. Several industrial processes and synthetic routes use these metals: biomass-to-liquids (BTL), coal-to-liquids (CTL), natural gas-to-liquids (GTL), water-gas-shift, alcohol synthesis, alcohol steam reforming, polymerization processes, cross-coupling reactions, and photocatalyst activated reactions. A vast number of materials are produced from these processes, including oil, lubricants, waxes, diesel and jet fuels, hydrogen (e.g., fuel cell applications), gasoline, rubbers, plastics, alcohols, pharmaceuticals, agrochemicals, feed-stock chemicals, and other alternative materials. However, given the true complexities of the variables involved in these processes, many key mechanistic issues are still not fully defined or understood. This Special Issue of Catalysis will be a collaborative effort to combine current catalysis research on these metals from experimental and theoretical perspectives on both heterogeneous and homogeneous catalysts. We welcome contributions from the catalysis community on catalyst characterization, kinetics, reaction mechanism, reactor development, theoretical modeling, and surface science.
polynuclear cobalt complexes --- water oxidation --- artificial photosynthesis --- Fe/Cu catalytic-ceramic-filler --- nitrobenzene compounds wastewater --- pilot-scale test --- biodegradability-improvement --- Fischer–Tropsch synthesis (FTS) --- oxygenates --- iron --- cobalt --- ruthenium --- Anderson-Schulz-Flory (ASF) distribution --- Fischer–Tropsch --- catalyst deactivation --- potassium --- liquid-phase catalytic oxidation --- limonene --- carvone --- zeolitic imidazolate frameworks --- Fischer-Tropsch synthesis --- chain growth --- CO insertion --- kinetic isotope effect --- DFT --- hydrogenation of CO --- iron catalysts --- syngas --- monometallic iron catalysts --- Fischer–Tropsch product distribution --- reaction mechanism --- catalysis --- process synthesis and design --- energy conversion --- iron–cobalt bimetal catalysts --- electrochemical application --- hydrogen evolution --- oxygen evolution --- oxygen reduction --- RWGS --- iron oxides --- CO2 conversion --- gas-switching --- Synthetic natural gas (SNG) --- Cobalt --- Iron --- C2–C4 hydrocarbons --- paraffin ratio --- asymmetric hydrogenation --- homogeneous catalysis --- structural design --- conformational analysis --- NMR spectroscopy --- alumina --- strong metal support interactions --- CO2 hydrogenation --- pressure --- temperature --- cobalt carboxylate --- coating --- autoxidation --- alkyd --- siccative --- polymerization --- manganese --- Fischer–Tropsch synthesis --- modeling --- kinetics --- Co --- Al2O3 --- Pt --- Cd --- In --- Sn --- hydrocarbon selectivity --- synergic effect --- GTL --- additives --- reducibility --- XANES --- mesoporous silica based catalysts --- kinetic studies --- 3-D printed microchannel microreactor --- cobalt–nickel nanoparticles --- cobalt–nickel alloys --- nickel --- HAADF-STEM --- TPR-EXAFS/XANES --- CO hydrogenation --- CSTR --- n/a --- Fischer-Tropsch synthesis (FTS) --- Fischer-Tropsch --- Fischer-Tropsch product distribution --- iron-cobalt bimetal catalysts --- C2-C4 hydrocarbons --- cobalt-nickel nanoparticles --- cobalt-nickel alloys
Listing 1 - 5 of 5 |
Sort by
|