Listing 1 - 10 of 1628 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
Choose an application
Brooks' Theorem (1941) is one of the most famous and fundamental theorems in graph theory – it is mentioned/treated in all general monographs on graph theory. It has sparked research in several directions. This book presents a comprehensive overview of this development and see it in context. It describes results, both early and recent, and explains relations: the various proofs, the many extensions and similar results for other graph parameters. It serves as a valuable reference to a wealth of information, now scattered in journals, proceedings and dissertations. The reader gets easy access to this wealth of information in comprehensive form, including best known proofs of the results described. Each chapter ends in a note section with historical remarks, comments and further results. The book is also suitable for graduate courses in graph theory and includes exercises. The book is intended for readers wanting to dig deeper into graph coloring theory than what is possible in the existing book literature. There is a comprehensive list of references to original sources.
Choose an application
With over 10,000 diagrams and extensive tables of properties, this atlas is comprehensive and unique. Never before has so much visual information about graphs been collected in a single volume, making it an invaluable source for researchers in graph theory, operations research and computer science.
Choose an application
Choose an application
Descriptive complexity theory establishes a connection between the computational complexity of algorithmic problems (the computational resources required to solve the problems) and their descriptive complexity (the language resources required to describe the problems). This groundbreaking book approaches descriptive complexity from the angle of modern structural graph theory, specifically graph minor theory. It develops a 'definable structure theory' concerned with the logical definability of graph theoretic concepts such as tree decompositions and embeddings. The first part starts with an introduction to the background, from logic, complexity, and graph theory, and develops the theory up to first applications in descriptive complexity theory and graph isomorphism testing. It may serve as the basis for a graduate-level course. The second part is more advanced and mainly devoted to the proof of a single, previously unpublished theorem: properties of graphs with excluded minors are decidable in polynomial time if, and only if, they are definable in fixed-point logic with counting.
Choose an application
Choose an application
Choose an application
Listing 1 - 10 of 1628 | << page >> |
Sort by
|