Listing 1 - 2 of 2 |
Sort by
|
Choose an application
Climate change stirs up more and more citizens’ interest and concern, and the role of greenhouse gases (GHG) in climate change has now been widely discussed. The agricultural sector is pointed as one of the main causes of climate change, mostly for its emissions of biogenic GHG. However, the impact of ecosystems environment and management practices on these emissions is yet not fully understood, and the response of agroecosystems to a changing environment is still questioned. This context highlights the necessity of studying and understanding ecosystem dynamics in order to design climate change mitigation strategies. To do so, mechanistic models reproducing the carbon, nitrogen and water cycles of ecosystems can be developed. This thesis aims at modifying the ASPECTS model, developed by Rasse et al. (2001) to simulate the evolution of forest stands, into a cropland and grassland model. The main dissimilarities between forests and croplands or grasslands were identified, and the required modifications were implemented in a new version of ASPECTS, called the Terrestrial Agroecosystems Dynamics Analysis (TADA) model. This new model was then calibrated against data acquired in two cropland and grassland sites, both equipped with eddy covariance (EC) systems and meteorological stations. In this work, the attention is paid to the water cycle. Soil evaporation and canopy transpiration were calibrated against evapotranspiration fluxes (ET) measurements, and the dynamics of water infiltration and percolation within the soil profile was compared to measures of soil water content (SWC). Soil evaporation was calibrated during bare soil conditions and resulted in a calibration RMSE of 1.37 and 2.57 mm day-1 and a validation RMSE of 1.82 and 2.75 mm day-1 for, respectively, the cropland and the grassland sites. These results could not be transferred to soils covered with vegetation, making plant transpiration impossible to calibrate. Canopy aerodynamic resistance was identified as a possible cause of this problem and a new methodology is proposed to calibrate these two processes with a wide and diverse dataset in terms of environmental conditions. In addition to this calibration, the new grazing module was tested by comparing measured and modelled grass height. The discrepancies are mainly due to the partitioning of assimilated carbon between the shoot and root compartments and to uncertainties in the estimation of cattle intake capacity. Paths of improvement are provided for a future calibration of this grazing module, considering both available data and potentially measurable variables.
Water cycle --- Evapotranspiration --- Grazing --- Ecosystem model --- GHG fluxes --- Sciences du vivant > Agriculture & agronomie
Choose an application
After the presentation of the state of art about the importance to study the GHG emissions by terrestrial agroecosystemandtherelationwiththeenvironmentalconditions, thedifferentwaystorealizedthisstudyarepresented. First, the different measurement methods are explained. Secondly, the principles of modelling are described followed by an history of the ecosystem models and the ways to classify them. Actually, the models have different objectives and consequently are composed differently. The model developed in the framework of this thesis aims to study the temporal dynamics (from intra-day to inter-annual) of the processes that compose the water, carbon and nitrogen cycle and lead to GHG exchanges between atmosphere and grasslands or croplands. According to those objectives, the model is a one dimension (vertical), dynamic and mechanistic model with a time step of 30 minutes. This model is called TADA, for Terrestrial Agro-ecosystem dynamics Analysis. It is created by using the forest model ASPECTS as a base, by adapting the processes that are specific to crop and grass ecosystems (e.g. phenology, carbon and nitrogen allocation, etc) and by implementing some new necessary process (e.g. management operation, grazing effect, etc). This project is a team work, the different parts of the code are divided by three for the modification, the implementation and the calibration. This thesis focuses on the soil organic carbon, the nitrogen cycle and the management operations. The carbon cycle and the phenology are presented in Delhez (2019) and the water cycle and grazing effect by Dumont (2019). Mineralization, humification and nitrification processes are calibrated in this work by using measurement data acquired on experimental sites located at Dorinne and Lonzée. The results show a lack of measurement data to calibrate the model correctly. After the calibration (including the calibration from the other thesis), the grassland version of the model runs to simulate the year 2013 at Dorinne and the cropland version to simulate the winter wheat crop of 2015 at Lonzée. The modelled results are discussed and compared to the measurement and to the literature. For the cropland, all the carbon fluxes are underestimate which could be a chain reaction due to one process, probably a too low leaf nitrogen content. For the grassland, the values are consistent with the measurements. The nitrous oxide fluxes modelled in the two ecosystems are in the order of magnitude of the value reported in the literature. Different proposals to ameliorate the model or to improve the calibration are then presented in regard with the different results reached. Après la présentation de l’état de l’art sur l’importance d’étudier les émissions de gaz à effet de serre (GES) par les agro-écosystèmes terrestres et leurs relations avec les conditions environnementales, les différentes manières de les étudier sont présentées. Dans un premier temps, les différentes méthodes de mesure sont expliquées. Deuxièmement, les principes de la modélisation sont décrits, suivi d’un historique des modèles d’écosystème et de leur classification. Les modèles ont en effet des objectifs différents et sont donc composés différemment. Le modèle développé dans le cadre de ce travail vise à étudier la dynamique temporelle (de l’intra-journalier à l’interannuelle) des processus qui composent le cycle de l’eau, du carbone et de l’azote et les échanges de GES entre l’atmosphère et les prairies ou les terres cultivées. Selon ces objectifs, le modèle est mécanistique, dynamique avec un pas de temps de 30 minutes et est composé d’une seule dimension (verticale). Ce modèle est appelé TADA, pour "Terrestrial Agro-Ecosystem Dynamics Analysis". Il est créé à partir du modèle ASPECTS, fonctionnant sur les écosystèmes de forêt, comme base et en adaptant les processus spécifiques aux écosystèmes de cultures et de prairies (par exemple: la phénologie, l’allocation de carbone et d’azote, etc.) et en incorporant certains nouveaux processus nécessaires (par exemple: la gestion, l’effet de pâturage, etc.). Ce projet est un travail d’équipe, les différentes parties du code sont divisées en trois pour la modification et la calibration. Ce travail porte sur le carbone organique du sol, le cycle de l’azote et les opérations de management. Le cycle du carbone et la phénologie sont présentés dans Delhez (2019) et le cycle de l’eau ainsi que l’effet de pâturage par Dumont (2019). Dans ce travail, les processus de minéralisation, d’humification et de nitrification sont calibrés en utilisant des donnéesdemesureacquisessurdessitesexpérimentauxsituésàDorinneetàLonzée. Les résultats obtenus indiquent un manque de données de mesure pour calibrer correctement le modèle. Après la calibration (y compris celles de Delhez (2019) et de Dumont (2019)), la version du modèle pour les pâturages simule l’année 2013 à Dorinne et la version pour les cultures simule la croissance de blé d’hiver de 2015 de Lonzée. Les résultats modélisés sont discutés et comparés aux mesures et à la littérature. Pour les cultures, tous les flux de carbone se révèlent sous-estimés, ce qui peut être une réaction en chaîne due à un autre processus, probablement une trop faible teneur en azote dans les feuilles. Pour les prairies, les valeurs sont cohérentes avec la mesure. Les flux de protoxyde d’azote modélisés dans les deux écosystèmes correspondent à l’ordre de grandeur des valeurs rapportées dans la littérature. Différentes propositions d’amélioration du modèle ou de calibration sont ensuite élaborées en fonction des différents résultats obtenus.
Modèle mécanistique --- Cycle de l'azote --- Carbone du sol --- Pratiques agriculturales --- Flux de GES --- Mechanistic modelling --- Nitrogen cycle --- Soil carbon --- Management practices --- GHG fluxes --- Sciences du vivant > Sciences de l'environnement & écologie
Listing 1 - 2 of 2 |
Sort by
|