Narrow your search

Library

KU Leuven (9)

ULiège (8)

UAntwerpen (7)

ULB (6)

VUB (5)

UCLouvain (3)

ARB (2)

UGent (2)

UMons (2)

KBR (1)

More...

Resource type

book (16)


Language

English (11)

French (5)


Year
From To Submit

2018 (1)

2017 (1)

2014 (1)

2011 (1)

2010 (1)

More...
Listing 1 - 10 of 16 << page
of 2
>>
Sort by
De Rham cohomology of differential modules on algebraic varieties
Authors: ---
ISBN: 3764363487 3034895224 3034883366 9783764363482 Year: 2001 Volume: 189 Publisher: Basel ; Berlin ; Boston : Birkhäuser,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This is a study of algebraic differential modules in several variables, and of some of their relations with analytic differential modules. Let us explain its source. The idea of computing the cohomology of a manifold, in particular its Betti numbers, by means of differential forms goes back to E. Cartan and G. De Rham. In the case of a smooth complex algebraic variety X, there are three variants: i) using the De Rham complex of algebraic differential forms on X, ii) using the De Rham complex of holomorphic differential forms on the analytic an manifold X underlying X, iii) using the De Rham complex of Coo complex differential forms on the differ­ entiable manifold Xdlf underlying Xan. These variants tum out to be equivalent. Namely, one has canonical isomorphisms of hypercohomology: While the second isomorphism is a simple sheaf-theoretic consequence of the Poincare lemma, which identifies both vector spaces with the complex cohomology H (XtoP, C) of the topological space underlying X, the first isomorphism is a deeper result of A. Grothendieck, which shows in particular that the Betti numbers can be computed algebraically. This result has been generalized by P. Deligne to the case of nonconstant coeffi­ cients: for any algebraic vector bundle .M on X endowed with an integrable regular connection, one has canonical isomorphisms The notion of regular connection is a higher dimensional generalization of the classical notion of fuchsian differential equations (only regular singularities).


Book
Cohomologies p-adiques et applications arithmétiques
Authors: --- --- --- ---
ISSN: 03031179 ISBN: 2856291155 2856291171 9782856291580 2856291589 Year: 2002 Publisher: Paris Société mathématique de France

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Géométrie diophantienne : mathématiques approfondies : années 1966-1967
Authors: ---
Year: 1967 Publisher: Orsay : Université de Paris, faculté des sciences d'Orsay,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
New foundations for geometry : two non-additive languages for arithmetical geometry
Author:
ISBN: 9781470423124 Year: 2017 Publisher: Providence : American Mathematical Society,


Book
Courbes et fibrés vectoriels en théorie de Hodge p-adique
Authors: --- ---
ISBN: 9782856298961 2856298966 Year: 2018 Publisher: Paris : Société Mathématique de France,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"Ce travail est consacré à la découverte, la définition et l'étude de la courbe fondamentale en théorie de Hodge p-adique. On prend pour cela le point de vue de définir et d'étudier les différents anneaux de périodes p-adiques comme anneaux de fonctions holomorphes de la variable p. L'étude de ces anneaux nous permet de définir la courbe. On classifie ensuite les fibrés vectoriels sur celle-ci, un théorème qui généralise en quelque sortes le théorème de classification des fibrés vectoriels sur la droite projective. Comme application on redémontre géométriquement les deux théorèmes principaux de la théorie de Hodge p-adique : faiblement admissible implique admissible et de Rham implique potentiellement semi-stable"--Back cover.


Book
La droite de Berkovich sur Z
Author:
ISSN: 03031179 ISBN: 9782856292945 Year: 2010 Publisher: Paris Société mathématique de France


Book
Arithmétique et géométrie : sur les variétés algébriques
Author:
Year: 1935 Publisher: Paris : Hermann,

An arithmetic Riemann-Roch theorem for singular arithmetic surfaces
Author:
ISSN: 00659266 ISBN: 0821804073 Year: 1996 Publisher: Providence (R.I.): American Mathematical Society

The arithmetic of elliptic curves
Author:
ISBN: 0387962034 3540962034 1475719221 1475719205 9780387962030 Year: 1986 Volume: 106 Publisher: New York (N.Y.): Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic theory of elliptic curves in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. The book begins with a brief discussion of the necessary algebro-geometric results, and proceeds with an exposition of the geometry of elliptic curves, the formal group of an elliptic curve, elliptic curves over finite fields, the complex numbers, local fields, and global fields. The last two chapters deal with integral and rational points, including Siegel's theorem and explicit computations for the curve Y 2 = X 3 + DX. The book contains three appendices: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and a third appendix giving an overview of more advanced topics.

Listing 1 - 10 of 16 << page
of 2
>>
Sort by