Listing 1 - 10 of 50 | << page >> |
Sort by
|
Choose an application
Convex functions --- Differentiable functions. --- Convex functions. --- Monotone operators. --- Operator theory --- Functions, Convex --- Functions of real variables
Choose an application
Convex functions. --- Subdifferentials. --- Calculus, Subdifferential --- Subdifferential calculus --- Convex functions --- Functions, Convex --- Functions of real variables
Choose an application
Geometria convexa --- Funcions convexes --- Convex geometry. --- Convex functions --- Functions, Convex --- Functions of real variables --- Geometry
Choose an application
Convex geometry. --- Convex functions --- Functions, Convex --- Functions of real variables --- Geometry --- Geometria convexa --- Funcions convexes --- Funcions de variables complexes --- Funcions còncaves --- Convexitat geomètrica --- Geometria --- Conjunts convexos
Choose an application
Covers articles on the areas of calculus of variations, control theory, measure theory, functional analysis, differential equations, integralequations, optimization and mathematical programming. Also covers topics related to nonsmooth analysis, generalized differentiability, and set-valued functions.
Convex functions --- Functional analysis --- Convex functions. --- Functional analysis. --- Convexe functies. --- Functions, Convex --- Functions of real variables --- Functional calculus --- Calculus of variations --- Functional equations --- Integral equations
Choose an application
This research-level book presents up-to-date information concerning recent developments in convex functions and partial orderings and some applications in mathematics, statistics, and reliability theory. The book will serve researchers in mathematical and statistical theory and theoretical and applied reliabilists.Key Features* Presents classical and newly published results on convex functions and related inequalities* Explains partial ordering based on arrangement and their applications in mathematics, probability, statsitics, and reliability* Demonstrates the connection o
Convex functions. --- Convex functions. Inequalities (Mathematics). --- Inequalities (Mathematics). --- Convex functions --- Inequalities (Mathematics) --- Mathematics --- Physical Sciences & Mathematics --- Calculus --- Functions, Convex --- Processes, Infinite --- Functions of real variables --- Fonctions convexes --- Inégalités (Mathématiques) --- ELSEVIER-B EPUB-LIV-FT
Choose an application
Convex functions
Convex functions. --- Functions. --- Analysis (Mathematics) --- Differential equations --- Mathematical analysis --- Mathematics --- Numbers, Complex --- Set theory --- Calculus --- Functions, Convex --- Functions of real variables --- Fonctions convexes --- Convex functions --- #TCPW W4.0 --- 517.5 --- 517.5 Theory of functions --- Theory of functions
Choose an application
Like differentiability, convexity is a natural and powerful property of functions that plays a significant role in many areas of mathematics, both pure and applied. It ties together notions from topology, algebra, geometry and analysis, and is an important tool in optimization, mathematical programming and game theory. This book, which is the product of a collaboration of over 15 years, is unique in that it focuses on convex functions themselves, rather than on convex analysis. The authors explore the various classes and their characteristics and applications, treating convex functions in both Euclidean and Banach spaces. The book can either be read sequentially for a graduate course, or dipped into by researchers and practitioners. Each chapter contains a variety of specific examples, and over 600 exercises are included, ranging in difficulty from early graduate to research level.
Convex functions --- Banach spaces --- Geometry, Non-Euclidean --- Convex functions. --- Banach spaces. --- Geometry, Non-Euclidean. --- Non-Euclidean geometry --- Geometry --- Parallels (Geometry) --- Functions of complex variables --- Generalized spaces --- Topology --- Functions, Convex --- Functions of real variables --- Foundations
Choose an application
Convex functions --- Information theory --- Mathematical statistics --- 519.23 --- Mathematics --- Statistical inference --- Statistics, Mathematical --- Statistics --- Probabilities --- Sampling (Statistics) --- Communication theory --- Communication --- Cybernetics --- Functions, Convex --- Functions of real variables --- 519.23 Statistical analysis. Inference methods --- Statistical analysis. Inference methods --- Statistical methods
Choose an application
L'auteur a fait sienne cette universelle maxime chinoise : « j'entends et j'oublie (cours oral) je vois et je retiens (étude du cours) je fais et je comprends » (exercices)… Ainsi, ce livre est un recueil d'exercices et problèmes corrigés, de difficulté graduée, accompagnés de commentaires sur l'utilisation du résultat obtenu, sur un prolongement possible et, occasionnellement, placés dans un contexte historique. Chaque chapitre débute par des rappels de définitions et résultats du Cours. Le cadre de travail est volontairement simple, l'auteur a voulu insister sur les idées et mécanismes de base davantage que sur des généralisations possibles ou des techniques particulières à telle ou telle situation. Les connaissances mathématiques requises pour tirer profit du recueil ont été maintenues minimales, celles normalement acquises à Bac+3 (ou Bac+2 suivant les cas). L'approche retenue pour avancer est celle d'une progression en spirale plutôt que linéaire au sens strict. Pour ce qui est de l'enseignement, les aspects de l'optimisation et analyse convexe traités dans cet ouvrage trouvent leur place dans les formations de niveau M1, parfois L3, (modules généralistes ou professionnalisés) et dans la formation mathématique des ingénieurs (en 2e année d'école, parfois en 1re année). La connaissance de ces aspects est un préalable à des formations plus en aval, en optimisation numérique par exemple. Détails: après un chapitre de révisions de base (analyse linéaire et bilinéaire, calcul différentiel), l'ouvrage aborde l'optimisation par les conditions d'optimalité (chap. 2 et 3), le rôle incontournable de la dualisation des problèmes (chap. 4) et le monde particulier de l'optimisation linéaire (chap.5). L'analyse convexe est traitée par l'initiation à la manipulation des concepts suivants : projection sur un convexe fermé (chap.6), le calcul sous différentiel et de transformées de Legendre-Fenchel (chap.7).
Convex functions --- Mathematical optimization --- Functions, Convex --- Functions of real variables --- Optimization (Mathematics) --- Optimization techniques --- Optimization theory --- Systems optimization --- Mathematical analysis --- Maxima and minima --- Operations research --- Simulation methods --- System analysis
Listing 1 - 10 of 50 | << page >> |
Sort by
|