Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Polynomial and its applications are well known for their proven properties and excellent applicability in interdisciplinary fields of science. Until now, research on polynomial and its applications has been done in mathematics, applied mathematics, and sciences. This book is based on recent results in all areas related to polynomial and its applications. This book provides an overview of the current research in the field of polynomials and its applications. The following papers have been published in this volume: ‘A Parametric Kind of the Degenerate Fubini Numbers and Polynomials’; ‘On 2-Variables Konhauser Matrix Polynomials and Their Fractional Integrals’; ‘Fractional Supersymmetric Hermite Polynomials’; ‘Rational Approximation for Solving an Implicitly Given Colebrook Flow Friction Equation’; ‘Iterating the Sum of Möbius Divisor Function and Euler Totient Function’; ‘Differential Equations Arising from the Generating Function of the (r, β)-Bell Polynomials and Distribution of Zeros of Equations’; ‘Truncated Fubini Polynomials’; ‘On Positive Quadratic Hyponormality of a Unilateral Weighted Shift with Recursively Generated by Five Weights’; ‘Ground State Solutions for Fractional Choquard Equations with Potential Vanishing at Infinity’; ‘Some Identities on Degenerate Bernstein and Degenerate Euler Polynomials’; ‘Some Identities Involving Hermite Kampé de Fériet Polynomials Arising from Differential Equations and Location of Their Zeros.’
Research & information: general --- Mathematics & science --- differential equations, heat equation --- Hermite Kampé de Fériet polynomials --- Hermite polynomials --- generating functions --- degenerate Bernstein polynomials --- degenerate Bernstein operators --- degenerate Euler polynomials --- variational methods --- fractional Choquard equation --- ground state solution --- vanishing potential --- positively quadratically hyponormal --- quadratically hyponormal --- unilateral weighted shift --- recursively generated --- Fubini polynomials --- Euler polynomials --- Bernoulli polynomials --- truncated exponential polynomials --- Stirling numbers of the second kind --- differential equations --- Bell polynomials --- r-Bell polynomials --- (r, β)-Bell polynomials --- zeros --- Möbius function --- divisor functions --- Euler totient function --- hydraulic resistance --- pipe flow friction --- Colebrook equation --- Colebrook–White experiment --- floating-point computations --- approximations --- Padé polynomials --- symbolic regression --- orthogonal polynomials --- difference-differential operator --- supersymmetry --- Konhauser matrix polynomial --- generating matrix function --- integral representation --- fractional integral --- degenerate Fubini polynomials --- Stirling numbers --- differential equations, heat equation --- Hermite Kampé de Fériet polynomials --- Hermite polynomials --- generating functions --- degenerate Bernstein polynomials --- degenerate Bernstein operators --- degenerate Euler polynomials --- variational methods --- fractional Choquard equation --- ground state solution --- vanishing potential --- positively quadratically hyponormal --- quadratically hyponormal --- unilateral weighted shift --- recursively generated --- Fubini polynomials --- Euler polynomials --- Bernoulli polynomials --- truncated exponential polynomials --- Stirling numbers of the second kind --- differential equations --- Bell polynomials --- r-Bell polynomials --- (r, β)-Bell polynomials --- zeros --- Möbius function --- divisor functions --- Euler totient function --- hydraulic resistance --- pipe flow friction --- Colebrook equation --- Colebrook–White experiment --- floating-point computations --- approximations --- Padé polynomials --- symbolic regression --- orthogonal polynomials --- difference-differential operator --- supersymmetry --- Konhauser matrix polynomial --- generating matrix function --- integral representation --- fractional integral --- degenerate Fubini polynomials --- Stirling numbers
Choose an application
Polynomial and its applications are well known for their proven properties and excellent applicability in interdisciplinary fields of science. Until now, research on polynomial and its applications has been done in mathematics, applied mathematics, and sciences. This book is based on recent results in all areas related to polynomial and its applications. This book provides an overview of the current research in the field of polynomials and its applications. The following papers have been published in this volume: ‘A Parametric Kind of the Degenerate Fubini Numbers and Polynomials’; ‘On 2-Variables Konhauser Matrix Polynomials and Their Fractional Integrals’; ‘Fractional Supersymmetric Hermite Polynomials’; ‘Rational Approximation for Solving an Implicitly Given Colebrook Flow Friction Equation’; ‘Iterating the Sum of Möbius Divisor Function and Euler Totient Function’; ‘Differential Equations Arising from the Generating Function of the (r, β)-Bell Polynomials and Distribution of Zeros of Equations’; ‘Truncated Fubini Polynomials’; ‘On Positive Quadratic Hyponormality of a Unilateral Weighted Shift with Recursively Generated by Five Weights’; ‘Ground State Solutions for Fractional Choquard Equations with Potential Vanishing at Infinity’; ‘Some Identities on Degenerate Bernstein and Degenerate Euler Polynomials’; ‘Some Identities Involving Hermite Kampé de Fériet Polynomials Arising from Differential Equations and Location of Their Zeros.’
Research & information: general --- Mathematics & science --- differential equations, heat equation --- Hermite Kampé de Fériet polynomials --- Hermite polynomials --- generating functions --- degenerate Bernstein polynomials --- degenerate Bernstein operators --- degenerate Euler polynomials --- variational methods --- fractional Choquard equation --- ground state solution --- vanishing potential --- positively quadratically hyponormal --- quadratically hyponormal --- unilateral weighted shift --- recursively generated --- Fubini polynomials --- Euler polynomials --- Bernoulli polynomials --- truncated exponential polynomials --- Stirling numbers of the second kind --- differential equations --- Bell polynomials --- r-Bell polynomials --- (r, β)-Bell polynomials --- zeros --- Möbius function --- divisor functions --- Euler totient function --- hydraulic resistance --- pipe flow friction --- Colebrook equation --- Colebrook–White experiment --- floating-point computations --- approximations --- Padé polynomials --- symbolic regression --- orthogonal polynomials --- difference-differential operator --- supersymmetry --- Konhauser matrix polynomial --- generating matrix function --- integral representation --- fractional integral --- degenerate Fubini polynomials --- Stirling numbers
Choose an application
Polynomial and its applications are well known for their proven properties and excellent applicability in interdisciplinary fields of science. Until now, research on polynomial and its applications has been done in mathematics, applied mathematics, and sciences. This book is based on recent results in all areas related to polynomial and its applications. This book provides an overview of the current research in the field of polynomials and its applications. The following papers have been published in this volume: ‘A Parametric Kind of the Degenerate Fubini Numbers and Polynomials’; ‘On 2-Variables Konhauser Matrix Polynomials and Their Fractional Integrals’; ‘Fractional Supersymmetric Hermite Polynomials’; ‘Rational Approximation for Solving an Implicitly Given Colebrook Flow Friction Equation’; ‘Iterating the Sum of Möbius Divisor Function and Euler Totient Function’; ‘Differential Equations Arising from the Generating Function of the (r, β)-Bell Polynomials and Distribution of Zeros of Equations’; ‘Truncated Fubini Polynomials’; ‘On Positive Quadratic Hyponormality of a Unilateral Weighted Shift with Recursively Generated by Five Weights’; ‘Ground State Solutions for Fractional Choquard Equations with Potential Vanishing at Infinity’; ‘Some Identities on Degenerate Bernstein and Degenerate Euler Polynomials’; ‘Some Identities Involving Hermite Kampé de Fériet Polynomials Arising from Differential Equations and Location of Their Zeros.’
differential equations, heat equation --- Hermite Kampé de Fériet polynomials --- Hermite polynomials --- generating functions --- degenerate Bernstein polynomials --- degenerate Bernstein operators --- degenerate Euler polynomials --- variational methods --- fractional Choquard equation --- ground state solution --- vanishing potential --- positively quadratically hyponormal --- quadratically hyponormal --- unilateral weighted shift --- recursively generated --- Fubini polynomials --- Euler polynomials --- Bernoulli polynomials --- truncated exponential polynomials --- Stirling numbers of the second kind --- differential equations --- Bell polynomials --- r-Bell polynomials --- (r, β)-Bell polynomials --- zeros --- Möbius function --- divisor functions --- Euler totient function --- hydraulic resistance --- pipe flow friction --- Colebrook equation --- Colebrook–White experiment --- floating-point computations --- approximations --- Padé polynomials --- symbolic regression --- orthogonal polynomials --- difference-differential operator --- supersymmetry --- Konhauser matrix polynomial --- generating matrix function --- integral representation --- fractional integral --- degenerate Fubini polynomials --- Stirling numbers
Choose an application
This Special Issue presents research papers on various topics within many different branches of mathematics, applied mathematics, and mathematical physics. Each paper presents mathematical theories, methods, and their application based on current and recently developed symmetric polynomials. Also, each one aims to provide the full understanding of current research problems, theories, and applications on the chosen topics and includes the most recent advances made in the area of symmetric functions and polynomials.
generalized Laguerre --- central complete Bell numbers --- rational polynomials --- Changhee polynomials of type two --- Euler polynomials --- generalized Laguerre polynomials --- Hermite --- conjecture --- Legendre --- the degenerate gamma function --- trivariate Lucas polynomials --- perfectly matched layer --- third-order character --- Euler numbers --- two variable q-Berstein operator --- entropy production --- hypergeometric function --- q-Bernoulli numbers --- q-Bernoulli polynomials --- symmetry group --- Bernoulli polynomials --- Fibonacci polynomials --- central incomplete Bell polynomials --- Chebyshev polynomials --- convolution sums --- Lucas polynomials --- Jacobi --- the modified degenerate Laplace transform --- q-Volkenborn integral on ?p --- and fourth kinds --- two variable q-Berstein polynomial --- the modified degenerate gamma function --- two variable q-Bernstein operators --- reduction method --- identity --- elementary and combinatorial methods --- generalized Bernoulli polynomials and numbers attached to a Dirichlet character ? --- explicit relations --- recursive sequence --- Fubini polynomials --- p-adic integral on ?p --- generating functions --- q-Euler number --- acoustic wave equation --- congruence --- trivariate Fibonacci polynomials --- stochastic thermodynamics --- fermionic p-adic integrals --- Laguerre polynomials --- fluctuation theorem --- Bernoulli numbers and polynomials --- w-torsion Fubini polynomials --- non-equilibrium free energy --- hypergeometric functions 1F1 and 2F1 --- recursive formula --- Chebyshev polynomials of the first --- second --- central complete Bell polynomials --- Apostol-type Frobenius–Euler polynomials --- sums of finite products --- q-Euler polynomial --- symmetric identities --- stability --- fermionic p-adic q-integral on ?p --- Gegenbauer polynomials --- continued fraction --- thermodynamics of information --- well-posedness --- fermionic p-adic integral on ?p --- catalan numbers --- classical Gauss sums --- three-variable Hermite polynomials --- q-Changhee polynomials --- Catalan numbers --- two variable q-Bernstein polynomials --- q-Euler polynomials --- analytic method --- representation --- mutual information --- Fibonacci --- Legendre polynomials --- Gegenbauer --- generalized Bernoulli polynomials and numbers of arbitrary complex order --- Lucas --- elementary method --- new sequence --- third --- the degenerate Laplace transform --- computational formula --- operational connection --- sums of finite products of Chebyshev polynomials of the third and fourth kinds --- Changhee polynomials --- linear form in logarithms
Listing 1 - 4 of 4 |
Sort by
|