Narrow your search
Listing 1 - 3 of 3
Sort by

Book
Contribution à l'étude de la fructose-1,6-bisphosphatase et de la sedoheptulose-1,7-bisphosphatase de Trypanosoma brucei

Loading...
Export citation

Choose an application

Bookmark

Abstract

Trypanosoma brucei is a flagelled protozoan organism responsible for sleeping sickness. It spends a part of its life cycle in the mammal’s blood. The bloodstream from of the parasite is entirely dependent on glycolysis for its ATP production and inhibition if this process leads to death of the parasite. Since a long time, the Research Unit for Tropical Diseases in the I.C.P. studies differences that may exist between T. brucei’s enzymes and their human homologues. Such differences could be used in the development of new drugs.
Recently, one has discovered in T. brucei a gene coding for FBPase, one of the important enzymes of glyconeogenesis, and surprisingly also a related gene coding for SBPase, an enzyme considered as characteristic of the Calvin cycle. The possibly simultaneous presence of these two proteins in T. brucei raises numerous questions about their functions and their regulation.
We overexpressed the T. brucei’s FBPase and T. brucei’s SBPase in two strains of E. coli : BL21 and BL21 plysS. Although weak, their overexpression was better in the BL21 strain. Subsequently, we performed a purification of these two proteins by affinity chromatography. The SBPase’s purification was efficient, but, on the other hand, the purification of FBPase was more difficult to achieve.
No enzymatic activity could be revealed as yet for these T. brucei’s enzymes. In the case of FBPase, this could be explained by the absence of its 31 N-terminal amino acids. On the other hand, we have no explanation yet for the SBPase. Maybe one has to test different in vitro assay conditions. The assays used so far may not reflect the optimal in vivo situation. Or, alternatively, one has to look for a possible effector.
By reverse transcription experiments, using RNA purified from both bloodstream and procyclic T. brucei, we obtained indications confirming that both FBPase and SBPase seem to be expressed in both life stages of the parasite Trypanosoma brucei, parasite responsable de la maladie du sommeil, est un organisme protozoaire dont une partie du cycle de vie se déroule dans le sang des mammifères. Cette forme sanguicole est entièrement dépendante de la glycolyse pour sa production d’ATP. L’inhibition de cette voie métabolique aboutit rapidement à la mort de ce parasite. Depuis de nombreuses années, l’Unité de Recherche sur les Maladies Tropicales de l’I.C.P. s’efforce à contribuer à la mise au point de médicaments pouvant combattre ce parasite, et ce, notamment en étudiant les différences éventuelles existant entre les enzymes de T. Brucei et celles de leurs homologues chez les mammifères.
Récemment, on a découvert chez T. brucei un gène codant la FBPase, une des enzymes clés de la gluconéogénèse, ainsi qu’un gène qui lui est proche et qui code la SBPase, une enzyme typique du cycle de Calvin, uniquement rencontrée jusqu’ici chez certains organismes photosynthétique. L’expression éventuelle de ces deux protéines chez T. brucei pose de nombreuses questions tant au point de vue de leurs fonctions que de leurs régulations.
Nous avons surexprimé la FBPase et la SBPase de T. brucei dans deux souches d’E. coli : BL21 et BL21 pLysS. Bien que faible, leur surexpression s’est avérée meilleure dans la souche BL21. Nous avons ensuite procédé à la purification de ces deux protéines par chromatographie d’affinité. La purification de la SBPase s’est montrée efficace, par contre, celle de la FBPase a été plus difficile à réaliser.
Aucune activité enzymatique n’a jamais pu être décelée pour ces deux enzymes. En ce qui concerne la FBPase, ce fait s’expliquerait par l’abstraction de ses 31 acides aminés à l’extrémité N-terminal. Dans le cas de la SBPase, par contre, on n’a pas encore d’explication claire. Il est probable qu’on n’ait pas reproduit les conditions optimales dans lesquelles cette enzyme se trouve in vivo. Il est également probable que la SBPase ait besoins d’un effecteur pour son activation. Dans ce cas, on devra le rechercher.
On a également procédé à des expériences de transcription inverse de l’ARNm des formes procycliques et sanguicoles de T. brucei. Les résultats obtenus nous permettent de conclure sous réserve que ka FBPase et la SBPase sont exprimées chez T. brucei


Book
Biochemical adaptation
Authors: ---
ISBN: 0691612633 1400855411 0691083444 0691083436 9781400855414 9780691083438 9780691083445 9780691612638 Year: 1984 Publisher: Princeton, New Jersey : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book discusses biochemical adaptation to environments from freezing polar oceans to boiling hot springs, and under hydrostatic pressures up to 1,000 times that at sea level.Originally published in 1984.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Adaptation (Physiology) --- Biochemistry. --- Biological chemistry --- Chemical composition of organisms --- Organisms --- Physiological chemistry --- Compensation (Physiology) --- Plasticity (Physiology) --- Composition --- Biology --- Chemistry --- Medical sciences --- Ecophysiology --- Biochemistry --- 57.017.32 --- 575.826 --- 575.826 Adaptation --- Adaptation --- Biologische wetenschappen in het algemeen. Biologie--?.017.32 --- 6-bisphosphatase. --- ATPase. --- Acid–base homeostasis. --- Adenosine monophosphate. --- Alanine. --- Alcohol dehydrogenase. --- Amino acid. --- Aminooxyacetic acid. --- Anabolism. --- Anaerobic glycolysis. --- Antifreeze. --- Arginine. --- Basal rate. --- Beta oxidation. --- Bohr effect. --- Carbohydrate. --- Carnitine. --- Catabolism. --- Catalase. --- Catalysis. --- Cellular respiration. --- Cofactor (biochemistry). --- Competitive inhibition. --- Cooperativity. --- Deep sea. --- Dehydrogenase. --- Detergent. --- Dissociation constant. --- Enzyme Repression. --- Enzyme inhibitor. --- Enzyme. --- Facultative anaerobic organism. --- Fatty acid. --- Fermentation. --- Flavin adenine dinucleotide. --- Fructose 1. --- Futile cycle. --- Glucagon. --- Gluconeogenesis. --- Glucose-6-phosphate dehydrogenase. --- Glucose. --- Glyceraldehyde 3-phosphate dehydrogenase. --- Glycerol. --- Glycogen phosphorylase. --- Glycogen. --- Glycogenolysis. --- Glycolysis. --- Hemoglobin. --- Hibernation. --- High-energy phosphate. --- Hill equation (biochemistry). --- Histidine. --- Hofmeister series. --- Hormone-sensitive lipase. --- Insulin. --- Isozyme. --- Ketosis. --- Lactic acid. --- Lipid. --- Lipolysis. --- Lysine. --- Mammalian diving reflex. --- Metabolic intermediate. --- Metabolism. --- Michaelis–Menten kinetics. --- Mitochondrial matrix. --- Mitochondrion. --- Molecular mimicry. --- Muscle. --- Nicotinamide adenine dinucleotide. --- Obligate anaerobe. --- Obligate. --- Organism. --- Ornithine. --- Osmolyte. --- Oxidative deamination. --- Peroxidase. --- Phosphagen. --- Phosphofructokinase. --- Phospholipid. --- Phosphorylase kinase. --- Proline. --- Proofreading (biology). --- Protein turnover. --- Protein. --- Proteolysis. --- Pyruvate carboxylase. --- Pyruvic acid. --- Redox. --- Regulatory enzyme. --- Root effect. --- Substrate-level phosphorylation. --- Thermoregulation. --- Thermus aquaticus. --- Thermus thermophilus. --- Triglyceride. --- Tryptophan. --- Turnover number. --- Urea cycle. --- Urea.


Book
Plant Therapeutics
Authors: --- ---
ISBN: 3036559558 3036559566 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue provides recent advances in the use of plants for therapeutic purposes. This Special Issue collected the plants, including leaf, fruit, and others. This Special Issue's targets were crude plant extract and active principle purified from the plant. This Special Issue prompted researchers to provide each plant discovery. We are pleased to include in this Special Issue the screened Mexican plants and the halophytic plants growing in central Saudi Arabia, and so on. As a result, we have sparked scientists' interest in studying the plant for therapeutic purposes. This field necessitates network pharmacology analysis and machine-aided learning. Many disorders resistant to modern medication are looking for active principles isolated from the plants all over the world.

Keywords

Medicine --- Pharmacology --- safflower --- hydroxysafflor yellow A --- safflower yellow A --- flavonoid --- platelet aggregation --- vescalagin --- methylglyoxal --- inflammation --- antioxidant --- insulin secretion --- traditional medicine --- hypoglycemic plants --- Eryngium longifolium --- Alsophila firma --- glucose 6-phosphatase --- fructose 1,6-bisphosphatase --- Lycium shawii --- Anabasis articulata --- Rumex vesicarius --- Zilla spinosa --- anticancer --- antimicrobial --- biogenetic interrelationship --- flavonoid contents --- trace elements --- human tumor cell lines --- cytotoxic effect --- plant extracts --- Acalypha monostachya --- Lindera obtusiloba --- apolipoprotein E-deficient mice --- atherosclerosis --- endothelium --- black bean soybean sauce --- by-product --- functional supplements --- Moringa oleifera --- anti-aging --- fibrosis --- kidney disease --- Gan-Mai-Da-Zao --- depression --- brain-derived neurotrophic factor --- serotonin transporter --- unpredictable chronic mild stress --- Acalypha arvensis --- ellagitannin --- corilagin --- Staphylococcus aureus --- flavonoids --- antibacterial --- Alzheimer’s disease --- amyloid β --- immunomagnetic reduction --- Drosophila melanogaster --- water extract of fermented rice bran --- non-alcoholic fatty liver disease --- high-fat diet --- aged rat --- Salvia haematodes --- rapid solid–liquid dynamic extraction (RSLDE) --- extractor Naviglio® --- Soxhlet apparatus --- medium pressure liquid chromatography (MPLC) --- antioxidant potential --- Inga jinicuil --- phytochemical profile --- HPLC-PDA --- GC-MS --- anti-inflammatory --- fast dissolving films --- yeast β-glucan --- bilberry juice --- diabetes --- herbal medicine --- bioactive derivative --- triple negative breast cancer --- Wnt/β-catenin --- anti-cancer --- n/a --- Alzheimer's disease --- rapid solid-liquid dynamic extraction (RSLDE)

Listing 1 - 3 of 3
Sort by