Listing 1 - 7 of 7 |
Sort by
|
Choose an application
This volume contains a selection of the pioneering papers by Nobel Laureate George Porter. It outlines his work on fast reactions, occurring in times from milliseconds to femtoseconds, in photochemistry, photosynthesis and solar energy, and includes the papers which led to the award of the Nobel Prize in Chemistry in 1967 for his work on flash photolysis. Lord Porter, President of the Royal Society from 1985 to 1990, is Chairman of the Centre for Photomolecular Sciences, Imperial College, and Emeritus Professor of Chemistry of the Royal Institution of Great Britain.This book is divided into 11
Flash photolysis. --- Free radicals (Chemistry) --- Excited state chemistry. --- Chemistry, Physical and theoretical --- Energy levels (Quantum mechanics) --- Quantum chemistry --- Radicals (Chemistry) --- Free radical reactions --- Absorption spectroscopy, Transient --- Photolysis, Flash --- Pump-probe spectroscopy --- Transient absorption spectroscopy --- Photochemistry --- Technique
Choose an application
Biochemistry --- Free Radicals. --- Molecular Biology. --- Neoplasms --- Pathology. --- Photochemotherapy. --- Photolysis. --- Cancer --- Excited state chemistry --- Flash photolysis --- Free radicals (Chemistry) --- Molecular biology --- Pathology, Molecular --- Pulse radiolysis --- Chimie des états excités --- Radicaux libres (Chimie) --- Biologie moléculaire --- Pathologie moléculaire --- methods. --- drug therapy. --- Photochemotherapy
Choose an application
This book provides an update for the rapidly developing technology known as “optogenetics”, which is the use of genetically encoded light-sensitive molecular elements (usually derived from lower organisms) to control or report various physiological and biochemical processes within the cell. Two ongoing clinical trials use optogenetic tools for vision restoration, and optogenetic strategies have been suggested as novel therapies for several neurological, psychiatric and cardiac disorders. This Special Issue comprises two reviews and seven experimental papers on different types of light-sensitive modules widely used in optogenetic studies. These papers demonstrate the efficiency and versatility of optogenetics and are expected to be equally relevant for advanced users and beginners considering using optogenetic tools in their research.
Research & information: general --- Biology, life sciences --- optogenetic tools --- neuroscience --- calcium sensor --- voltage sensor --- neurotransmitters --- optogenetics --- channelrhodopsins --- sodium --- calcium --- DC gate --- Optogenetics --- p53 --- AsLOV2 --- LINuS --- LEXY --- MIP --- PMI --- Chlamydomonas reinhardtii --- ion channel --- electrophysiology --- molecular dynamics simulations --- membrane-protein interaction --- energy of membrane deformation --- CTMD method, residual hydrophobic mismatch --- microbial rhodopsin --- channelrhodopsin --- membrane current --- hippocampal neurons --- light stimulation --- channelrhodopsin-2 --- photoreceptor --- BLUF --- modular domain --- resonance Raman --- flash photolysis --- hybrid QM/MM simulation --- two-photon --- azobenzene --- photoswitch --- photoswitching --- photocontrol --- all-optical electrophysiology --- microbial rhodopsins --- ion channels --- LOV domains --- membrane potential --- intracellular trafficking --- protein–protein interaction --- signaling
Choose an application
This book provides an update for the rapidly developing technology known as “optogenetics”, which is the use of genetically encoded light-sensitive molecular elements (usually derived from lower organisms) to control or report various physiological and biochemical processes within the cell. Two ongoing clinical trials use optogenetic tools for vision restoration, and optogenetic strategies have been suggested as novel therapies for several neurological, psychiatric and cardiac disorders. This Special Issue comprises two reviews and seven experimental papers on different types of light-sensitive modules widely used in optogenetic studies. These papers demonstrate the efficiency and versatility of optogenetics and are expected to be equally relevant for advanced users and beginners considering using optogenetic tools in their research.
optogenetic tools --- neuroscience --- calcium sensor --- voltage sensor --- neurotransmitters --- optogenetics --- channelrhodopsins --- sodium --- calcium --- DC gate --- Optogenetics --- p53 --- AsLOV2 --- LINuS --- LEXY --- MIP --- PMI --- Chlamydomonas reinhardtii --- ion channel --- electrophysiology --- molecular dynamics simulations --- membrane-protein interaction --- energy of membrane deformation --- CTMD method, residual hydrophobic mismatch --- microbial rhodopsin --- channelrhodopsin --- membrane current --- hippocampal neurons --- light stimulation --- channelrhodopsin-2 --- photoreceptor --- BLUF --- modular domain --- resonance Raman --- flash photolysis --- hybrid QM/MM simulation --- two-photon --- azobenzene --- photoswitch --- photoswitching --- photocontrol --- all-optical electrophysiology --- microbial rhodopsins --- ion channels --- LOV domains --- membrane potential --- intracellular trafficking --- protein–protein interaction --- signaling
Choose an application
This book provides an update for the rapidly developing technology known as “optogenetics”, which is the use of genetically encoded light-sensitive molecular elements (usually derived from lower organisms) to control or report various physiological and biochemical processes within the cell. Two ongoing clinical trials use optogenetic tools for vision restoration, and optogenetic strategies have been suggested as novel therapies for several neurological, psychiatric and cardiac disorders. This Special Issue comprises two reviews and seven experimental papers on different types of light-sensitive modules widely used in optogenetic studies. These papers demonstrate the efficiency and versatility of optogenetics and are expected to be equally relevant for advanced users and beginners considering using optogenetic tools in their research.
Research & information: general --- Biology, life sciences --- optogenetic tools --- neuroscience --- calcium sensor --- voltage sensor --- neurotransmitters --- optogenetics --- channelrhodopsins --- sodium --- calcium --- DC gate --- Optogenetics --- p53 --- AsLOV2 --- LINuS --- LEXY --- MIP --- PMI --- Chlamydomonas reinhardtii --- ion channel --- electrophysiology --- molecular dynamics simulations --- membrane-protein interaction --- energy of membrane deformation --- CTMD method, residual hydrophobic mismatch --- microbial rhodopsin --- channelrhodopsin --- membrane current --- hippocampal neurons --- light stimulation --- channelrhodopsin-2 --- photoreceptor --- BLUF --- modular domain --- resonance Raman --- flash photolysis --- hybrid QM/MM simulation --- two-photon --- azobenzene --- photoswitch --- photoswitching --- photocontrol --- all-optical electrophysiology --- microbial rhodopsins --- ion channels --- LOV domains --- membrane potential --- intracellular trafficking --- protein–protein interaction --- signaling
Choose an application
The high importance of free radical chemistry for a variety of biological events, including ageing and inflammation, has attracted considerable interest in understanding the related mechanistic steps at the molecular level. Modelling the free radical chemical reactivity of biological systems is an important research area. When studying free-radical-based chemical mechanisms, biomimetic chemistry and the design of established biomimetic models come into play to perform experiments in a controlled environment, suitably designed to be a similar as possible to cellular conditions. This Special Issue provides readers with a wide overview of biomimetic radical chemistry, where molecular mechanisms have been defined and molecular libraries of products are developed to be used as traces for the discoveries of some relevant biological processes. Several subjects are presented, with five articles and five reviews written by specialists in the fields of DNA, proteins, lipids, biotechnological applications and bioinspired synthesis, with “free radicals” as the common denominator.
guanine --- guanyl radical --- tautomerism --- guanine radical cation --- oligonucleotides --- DNA --- G-quadruplex --- time-resolved spectroscopies --- reactive oxygen species (ROS) --- oxidation --- catalase mimics --- peroxide --- diiron-peroxo complexes --- structure/activity --- kinetic studies --- biomimetic chemistry --- cysteine --- ketone reduction --- free radicals --- pulse radiolysis --- kinetics --- DNA oxidation --- DNA hole transfer --- molecular dynamics --- quantum dynamics --- electron transfer --- charge transfer --- quantum coherence --- chemiluminescence --- reaction mechanisms --- singlet oxygen --- reactive oxygen species --- light emission --- crosslink --- dimerization --- protein oxidation --- radicals --- di-tyrosine --- di-tryptophan --- disulfides --- thiols --- aggregation --- proteomics --- mass spectrometry --- collagen --- riboflavin --- hyaluronic acid --- EPR spectroscopy --- keratoconus --- STEM --- DNA biosensor --- chemical nucleases --- DNA-drug interaction --- copper complexes --- metallodrugs --- MEP pathway --- antibiotics --- IspH --- LytB --- [4Fe-4S] cluster --- reductive dehydroxylation --- bioorganometallic intermediate --- inhibitors --- methionine --- neighboring group effect --- hydroxyl radical --- triplet state of carboxybenzophenone --- one-electron oxidants --- laser flash photolysis --- peptides --- proteins --- n/a
Choose an application
The high importance of free radical chemistry for a variety of biological events, including ageing and inflammation, has attracted considerable interest in understanding the related mechanistic steps at the molecular level. Modelling the free radical chemical reactivity of biological systems is an important research area. When studying free-radical-based chemical mechanisms, biomimetic chemistry and the design of established biomimetic models come into play to perform experiments in a controlled environment, suitably designed to be a similar as possible to cellular conditions. This Special Issue provides readers with a wide overview of biomimetic radical chemistry, where molecular mechanisms have been defined and molecular libraries of products are developed to be used as traces for the discoveries of some relevant biological processes. Several subjects are presented, with five articles and five reviews written by specialists in the fields of DNA, proteins, lipids, biotechnological applications and bioinspired synthesis, with “free radicals” as the common denominator.
Research & information: general --- Chemistry --- Inorganic chemistry --- guanine --- guanyl radical --- tautomerism --- guanine radical cation --- oligonucleotides --- DNA --- G-quadruplex --- time-resolved spectroscopies --- reactive oxygen species (ROS) --- oxidation --- catalase mimics --- peroxide --- diiron-peroxo complexes --- structure/activity --- kinetic studies --- biomimetic chemistry --- cysteine --- ketone reduction --- free radicals --- pulse radiolysis --- kinetics --- DNA oxidation --- DNA hole transfer --- molecular dynamics --- quantum dynamics --- electron transfer --- charge transfer --- quantum coherence --- chemiluminescence --- reaction mechanisms --- singlet oxygen --- reactive oxygen species --- light emission --- crosslink --- dimerization --- protein oxidation --- radicals --- di-tyrosine --- di-tryptophan --- disulfides --- thiols --- aggregation --- proteomics --- mass spectrometry --- collagen --- riboflavin --- hyaluronic acid --- EPR spectroscopy --- keratoconus --- STEM --- DNA biosensor --- chemical nucleases --- DNA-drug interaction --- copper complexes --- metallodrugs --- MEP pathway --- antibiotics --- IspH --- LytB --- [4Fe-4S] cluster --- reductive dehydroxylation --- bioorganometallic intermediate --- inhibitors --- methionine --- neighboring group effect --- hydroxyl radical --- triplet state of carboxybenzophenone --- one-electron oxidants --- laser flash photolysis --- peptides --- proteins
Listing 1 - 7 of 7 |
Sort by
|