Listing 1 - 10 of 14 | << page >> |
Sort by
|
Choose an application
621.3 --- Electrical engineering --- 621.3 Electrical engineering --- Electric filters --- Digital electronics --- Filtres électriques --- Électronique numérique --- Filtres électriques. --- Électronique numérique. --- FILTER THEORY --- FILTER DESIGN --- ELECTRICAL ENGINEERING --- FILTERS --- Monograph --- Electrical engineering. --- Electric engineering --- Engineering --- Filtres électriques. --- Électronique numérique.
Choose an application
5G traffic has very diverse requirements with respect to data rate, delay, and reliability. The concept of using multiple OFDM numerologies adopted in the 5G NR standard will likely meet these multiple requirements to some extent. However, the traffic is radically accruing different characteristics and requirements when compared with the initial stage of 5G, which focused mainly on high-speed multimedia data applications. For instance, applications such as vehicular communications and robotics control require a highly reliable and ultra-low delay. In addition, various emerging M2M applications have sparse traffic with a small amount of data to be delivered. The state-of-the-art OFDM technique has some limitations when addressing the aforementioned requirements at the same time. Meanwhile, numerous waveform alternatives, such as FBMC, GFDM, and UFMC, have been explored. They also have their own pros and cons due to their intrinsic waveform properties. Hence, it is the opportune moment to come up with modification/variations/combinations to the aforementioned techniques or a new waveform design for 5G systems and beyond. The aim of this Special Issue is to provide the latest research and advances in the field of waveform design for 5G systems and beyond.
Technology: general issues --- History of engineering & technology --- Energy industries & utilities --- multicarrier modulation --- prototype filter design --- frequency sampling methods --- windowing based methods --- optimization based methods --- V2X --- LDS-F-OFDM --- LDS-UFMC --- EVA channel model --- multi-input-multi-output (MIMO) --- space time block coding --- physical layer security (PLS) --- secrecy capacity --- 5G waveform --- SC-FDMA --- FBMC --- Low PAPR FBMC (LP-FBMC) --- access timing offset --- carrier frequency offset --- high-power amplifier (HPA) nonlinearity --- software defined radio (SDR) device --- uplink indoor channel --- out-of-band (OOB) emission --- space time codes --- differential space time modulation --- differential detection --- pair-wise detection --- maximum likelihood detection --- n/a
Choose an application
5G traffic has very diverse requirements with respect to data rate, delay, and reliability. The concept of using multiple OFDM numerologies adopted in the 5G NR standard will likely meet these multiple requirements to some extent. However, the traffic is radically accruing different characteristics and requirements when compared with the initial stage of 5G, which focused mainly on high-speed multimedia data applications. For instance, applications such as vehicular communications and robotics control require a highly reliable and ultra-low delay. In addition, various emerging M2M applications have sparse traffic with a small amount of data to be delivered. The state-of-the-art OFDM technique has some limitations when addressing the aforementioned requirements at the same time. Meanwhile, numerous waveform alternatives, such as FBMC, GFDM, and UFMC, have been explored. They also have their own pros and cons due to their intrinsic waveform properties. Hence, it is the opportune moment to come up with modification/variations/combinations to the aforementioned techniques or a new waveform design for 5G systems and beyond. The aim of this Special Issue is to provide the latest research and advances in the field of waveform design for 5G systems and beyond.
multicarrier modulation --- prototype filter design --- frequency sampling methods --- windowing based methods --- optimization based methods --- V2X --- LDS-F-OFDM --- LDS-UFMC --- EVA channel model --- multi-input-multi-output (MIMO) --- space time block coding --- physical layer security (PLS) --- secrecy capacity --- 5G waveform --- SC-FDMA --- FBMC --- Low PAPR FBMC (LP-FBMC) --- access timing offset --- carrier frequency offset --- high-power amplifier (HPA) nonlinearity --- software defined radio (SDR) device --- uplink indoor channel --- out-of-band (OOB) emission --- space time codes --- differential space time modulation --- differential detection --- pair-wise detection --- maximum likelihood detection --- n/a
Choose an application
5G traffic has very diverse requirements with respect to data rate, delay, and reliability. The concept of using multiple OFDM numerologies adopted in the 5G NR standard will likely meet these multiple requirements to some extent. However, the traffic is radically accruing different characteristics and requirements when compared with the initial stage of 5G, which focused mainly on high-speed multimedia data applications. For instance, applications such as vehicular communications and robotics control require a highly reliable and ultra-low delay. In addition, various emerging M2M applications have sparse traffic with a small amount of data to be delivered. The state-of-the-art OFDM technique has some limitations when addressing the aforementioned requirements at the same time. Meanwhile, numerous waveform alternatives, such as FBMC, GFDM, and UFMC, have been explored. They also have their own pros and cons due to their intrinsic waveform properties. Hence, it is the opportune moment to come up with modification/variations/combinations to the aforementioned techniques or a new waveform design for 5G systems and beyond. The aim of this Special Issue is to provide the latest research and advances in the field of waveform design for 5G systems and beyond.
Technology: general issues --- History of engineering & technology --- Energy industries & utilities --- multicarrier modulation --- prototype filter design --- frequency sampling methods --- windowing based methods --- optimization based methods --- V2X --- LDS-F-OFDM --- LDS-UFMC --- EVA channel model --- multi-input-multi-output (MIMO) --- space time block coding --- physical layer security (PLS) --- secrecy capacity --- 5G waveform --- SC-FDMA --- FBMC --- Low PAPR FBMC (LP-FBMC) --- access timing offset --- carrier frequency offset --- high-power amplifier (HPA) nonlinearity --- software defined radio (SDR) device --- uplink indoor channel --- out-of-band (OOB) emission --- space time codes --- differential space time modulation --- differential detection --- pair-wise detection --- maximum likelihood detection
Choose an application
Electrical machines and drives dominate our everyday lives. This is due to their numerous applications in industry, power production, home appliances, and transportation systems such as electric and hybrid electric vehicles, ships, and aircrafts. Their development follows rapid advances in science, engineering, and technology. Researchers around the world are extensively investigating electrical machines and drives because of their reliability, efficiency, performance, and fault-tolerant structure. In particular, there is a focus on the importance of utilizing these new trends in technology for energy saving and reducing greenhouse gas emissions. This Special Issue will provide the platform for researchers to present their recent work on advances in the field of electrical machines and drives, including special machines and their applications; new materials, including the insulation of electrical machines; new trends in diagnostics and condition monitoring; power electronics, control schemes, and algorithms for electrical drives; new topologies; and innovative applications.
Technology: general issues --- History of engineering & technology --- fault size --- inter-laminar fault --- localized losses --- thermographic measurement --- thermal-electric coupling --- axial flux --- demagnetization --- finite element analysis --- permanent magnet --- static eccentricity --- synchronous generator --- power loss minimization --- speed control drive systems --- efficiency measurement --- IPMSM --- additive manufacturing --- three-dimensional printing --- topology optimization --- magnetic materials --- soft magnetic materials --- permanent magnets --- electrical machines --- torque ripple --- 6th harmonic --- induction motor --- AC machine --- PWM inverter --- space phasor modulation --- electric motor --- interior permanent magnet --- reluctance --- MMF-permeance --- winding function --- predictive maintenance --- digital twin --- artificial intelligence --- Industry 4.0 --- data handling --- life cycle --- electric machines --- electromagnetic analysis --- electromagnetic measurements --- core losses --- rotor flux linkage --- modular stator --- oriented steel --- flux-injecting probes --- insulation system --- partial discharges --- capacitive model --- MATLAB/Simulink --- flashover voltage --- epoxy resin --- matrix-converter --- input AC filter design --- PMSM --- predictive control --- electrical drives --- energy efficiency --- energy-saving --- power quality --- current signals --- stray flux signals --- LDA --- automatic fault diagnosis --- broken rotor bars --- soft-starters
Choose an application
Electrical machines and drives dominate our everyday lives. This is due to their numerous applications in industry, power production, home appliances, and transportation systems such as electric and hybrid electric vehicles, ships, and aircrafts. Their development follows rapid advances in science, engineering, and technology. Researchers around the world are extensively investigating electrical machines and drives because of their reliability, efficiency, performance, and fault-tolerant structure. In particular, there is a focus on the importance of utilizing these new trends in technology for energy saving and reducing greenhouse gas emissions. This Special Issue will provide the platform for researchers to present their recent work on advances in the field of electrical machines and drives, including special machines and their applications; new materials, including the insulation of electrical machines; new trends in diagnostics and condition monitoring; power electronics, control schemes, and algorithms for electrical drives; new topologies; and innovative applications.
fault size --- inter-laminar fault --- localized losses --- thermographic measurement --- thermal-electric coupling --- axial flux --- demagnetization --- finite element analysis --- permanent magnet --- static eccentricity --- synchronous generator --- power loss minimization --- speed control drive systems --- efficiency measurement --- IPMSM --- additive manufacturing --- three-dimensional printing --- topology optimization --- magnetic materials --- soft magnetic materials --- permanent magnets --- electrical machines --- torque ripple --- 6th harmonic --- induction motor --- AC machine --- PWM inverter --- space phasor modulation --- electric motor --- interior permanent magnet --- reluctance --- MMF-permeance --- winding function --- predictive maintenance --- digital twin --- artificial intelligence --- Industry 4.0 --- data handling --- life cycle --- electric machines --- electromagnetic analysis --- electromagnetic measurements --- core losses --- rotor flux linkage --- modular stator --- oriented steel --- flux-injecting probes --- insulation system --- partial discharges --- capacitive model --- MATLAB/Simulink --- flashover voltage --- epoxy resin --- matrix-converter --- input AC filter design --- PMSM --- predictive control --- electrical drives --- energy efficiency --- energy-saving --- power quality --- current signals --- stray flux signals --- LDA --- automatic fault diagnosis --- broken rotor bars --- soft-starters
Choose an application
Electrical machines and drives dominate our everyday lives. This is due to their numerous applications in industry, power production, home appliances, and transportation systems such as electric and hybrid electric vehicles, ships, and aircrafts. Their development follows rapid advances in science, engineering, and technology. Researchers around the world are extensively investigating electrical machines and drives because of their reliability, efficiency, performance, and fault-tolerant structure. In particular, there is a focus on the importance of utilizing these new trends in technology for energy saving and reducing greenhouse gas emissions. This Special Issue will provide the platform for researchers to present their recent work on advances in the field of electrical machines and drives, including special machines and their applications; new materials, including the insulation of electrical machines; new trends in diagnostics and condition monitoring; power electronics, control schemes, and algorithms for electrical drives; new topologies; and innovative applications.
Technology: general issues --- History of engineering & technology --- fault size --- inter-laminar fault --- localized losses --- thermographic measurement --- thermal-electric coupling --- axial flux --- demagnetization --- finite element analysis --- permanent magnet --- static eccentricity --- synchronous generator --- power loss minimization --- speed control drive systems --- efficiency measurement --- IPMSM --- additive manufacturing --- three-dimensional printing --- topology optimization --- magnetic materials --- soft magnetic materials --- permanent magnets --- electrical machines --- torque ripple --- 6th harmonic --- induction motor --- AC machine --- PWM inverter --- space phasor modulation --- electric motor --- interior permanent magnet --- reluctance --- MMF-permeance --- winding function --- predictive maintenance --- digital twin --- artificial intelligence --- Industry 4.0 --- data handling --- life cycle --- electric machines --- electromagnetic analysis --- electromagnetic measurements --- core losses --- rotor flux linkage --- modular stator --- oriented steel --- flux-injecting probes --- insulation system --- partial discharges --- capacitive model --- MATLAB/Simulink --- flashover voltage --- epoxy resin --- matrix-converter --- input AC filter design --- PMSM --- predictive control --- electrical drives --- energy efficiency --- energy-saving --- power quality --- current signals --- stray flux signals --- LDA --- automatic fault diagnosis --- broken rotor bars --- soft-starters
Choose an application
Renewable energies are becoming a must to counteract the consequences of the global warming. More efficient devices and better control strategies are required in the generation, transport, and conversion of electricity. Energy is processed by power converters that are currently the key building blocks in modern power distribution systems. The associated electrical architecture is based on buses for energy distribution and uses a great number of converters for interfacing both input and output energy. This book shows that sliding-mode control is contributing to improve the performances of power converters by means of accurate theoretical analyses that result in efficient implementations. The sliding-mode control of power converters for renewable energy applications offers a panoramic view of the most recent uses of this regulation technique in practical cases. By presenting examples that range from dozens of kilowatts to only a few watts, the book covers control solutions for AC–DC and DC–AC generation, power factor correction, multilevel converters, constant-power load supply, wind energy systems, efficient lighting, digital control implementation, multiphase converters, and energy harvesting. The selected examples developed by recognized specialists are illustrated by means of detailed simulations and experiments to help the reader to understand the theoretical approach in each case considered in the book.
History of engineering & technology --- output regulation --- state feedback --- sliding mode control --- DC-DC power converter --- DC-DC converters --- boost converter --- constant power load (CPL) --- fixed switching frequency --- sliding-mode control --- inrush current mitigation --- Induction Electrodeless Fluorescent Lamps (IEFL) --- High-Intensity Discharge Lamps (HID) --- loss-free resistor (LFR) --- two-loop digital control --- buck converter --- input-output linearization --- PWM --- sliding mode --- DC-DC converter --- multiphase converter --- disturbance observer --- electric vehicles --- power-hardware-in-the-loop --- renewable energy systems --- fast dynamic response --- wind energy conversion system --- series-series-compensated wireless power transfer system --- energy harvesting --- isolated SEPIC converter --- high power factor rectifier --- isolated PFC rectifier --- bridgeless rectifier --- DC distribution bus --- microinverter --- sliding mode control (SMC), self-oscillating system --- two cascaded-boosts converters --- decision making --- design concept --- doubly-fed induction generator --- grid-side converter --- harmonic distortion --- multi-objective optimisation --- second-order sliding-mode control --- tuning --- unbalanced voltage --- wind power generation --- harvesting --- inductive transducer --- loss free resistor --- dc-to-dc converter --- DFIG --- adaptive-gain second-order sliding mode --- direct power control --- balanced and unbalanced grid voltage --- Lyapunov-based filter design --- constant power load --- Sliding Mode controlled power module --- zero dynamics stability --- modular multilevel converter --- Lyapunov stability --- dual boost inverter --- step-up inverter --- grid connection --- sliding mode control (SMC) --- power converter --- continuous signal generator --- equivalent control --- AC-DC power converter --- wind energy --- control --- dual-stator winding induction generator --- second order sliding mode
Choose an application
Recent progress in the fields of Electrical and Electronic Engineering has created new application scenarios and new Electromagnetic Compatibility (EMC) challenges, along with novel tools and methodologies to address them. This volume, which collects the contributions published in the “Electromagnetic Interference and Compatibility” Special Issue of MDPI Electronics, provides a vivid picture of current research trends and new developments in the rapidly evolving, broad area of EMC, including contributions on EMC issues in digital communications, power electronics, and analog integrated circuits and sensors, along with signal and power integrity and electromagnetic interference (EMI) suppression properties of materials.
Technology: general issues --- Energy industries & utilities --- electromagnetic bandgap (EBG) --- dual perforation (DP) --- parallel-plate noise --- power delivery network (PDN) --- printed circuit board (PCB) --- meander split --- power/ground plane --- crosstalk --- signal integrity --- equivalent circuit --- capacitive and magnetic coupling --- hall-effect current sensors --- commercial current sensor --- electromagnetic compatibility (EMC) --- electromagnetic interference (EMI) --- direct power injection (DPI) test --- transverse-electromagnetic (TEM) test --- bulk current injection (BCI) test --- Spread Spectrum --- DC–DC power converters --- digital communications --- channel capacity --- resonant coupling --- Electromagnetic Interferences --- Amplifiers --- CMOS integrated circuits --- susceptibility of the output pin --- electromagnetic compatibility --- power electronics EMC --- EMI mitigation techniques --- EMI filter design and optimization --- common mode noise --- EMI modeling --- Fourier series --- impedance balancing --- resonant frequency --- battery management system (BMS) --- Li-ion battery pack --- electric vehicles (EVs) --- hybrid electric vehicles (HEVs) --- IC-level EMC --- susceptibility to electromagnetic interference (EMI) --- direct power injection (DPI) --- anechoic chamber --- polyaniline --- gelatin --- composite --- microwave absorption --- dielectric permittivity --- electrical conductivity --- shielding effectiveness --- biochar --- eco-friendly material --- cementitious composites --- waveguides --- electromagnetic interference (EMI) suppressors --- sleeve ferrite cores --- cable filtering --- nanocrystalline (NC) --- split-core --- snap ferrite --- gap --- DC currents --- relative permeability --- impedance --- conducted emissions --- Discrete Wavelet Transform --- electromagnetic interference --- Empirical Mode Decomposition --- harmonics --- Switched-Mode Power Supplies --- transients --- Wavelet Packet Transform
Choose an application
Renewable energies are becoming a must to counteract the consequences of the global warming. More efficient devices and better control strategies are required in the generation, transport, and conversion of electricity. Energy is processed by power converters that are currently the key building blocks in modern power distribution systems. The associated electrical architecture is based on buses for energy distribution and uses a great number of converters for interfacing both input and output energy. This book shows that sliding-mode control is contributing to improve the performances of power converters by means of accurate theoretical analyses that result in efficient implementations. The sliding-mode control of power converters for renewable energy applications offers a panoramic view of the most recent uses of this regulation technique in practical cases. By presenting examples that range from dozens of kilowatts to only a few watts, the book covers control solutions for AC–DC and DC–AC generation, power factor correction, multilevel converters, constant-power load supply, wind energy systems, efficient lighting, digital control implementation, multiphase converters, and energy harvesting. The selected examples developed by recognized specialists are illustrated by means of detailed simulations and experiments to help the reader to understand the theoretical approach in each case considered in the book.
output regulation --- state feedback --- sliding mode control --- DC-DC power converter --- DC-DC converters --- boost converter --- constant power load (CPL) --- fixed switching frequency --- sliding-mode control --- inrush current mitigation --- Induction Electrodeless Fluorescent Lamps (IEFL) --- High-Intensity Discharge Lamps (HID) --- loss-free resistor (LFR) --- two-loop digital control --- buck converter --- input-output linearization --- PWM --- sliding mode --- DC-DC converter --- multiphase converter --- disturbance observer --- electric vehicles --- power-hardware-in-the-loop --- renewable energy systems --- fast dynamic response --- wind energy conversion system --- series-series-compensated wireless power transfer system --- energy harvesting --- isolated SEPIC converter --- high power factor rectifier --- isolated PFC rectifier --- bridgeless rectifier --- DC distribution bus --- microinverter --- sliding mode control (SMC), self-oscillating system --- two cascaded-boosts converters --- decision making --- design concept --- doubly-fed induction generator --- grid-side converter --- harmonic distortion --- multi-objective optimisation --- second-order sliding-mode control --- tuning --- unbalanced voltage --- wind power generation --- harvesting --- inductive transducer --- loss free resistor --- dc-to-dc converter --- DFIG --- adaptive-gain second-order sliding mode --- direct power control --- balanced and unbalanced grid voltage --- Lyapunov-based filter design --- constant power load --- Sliding Mode controlled power module --- zero dynamics stability --- modular multilevel converter --- Lyapunov stability --- dual boost inverter --- step-up inverter --- grid connection --- sliding mode control (SMC) --- power converter --- continuous signal generator --- equivalent control --- AC-DC power converter --- wind energy --- control --- dual-stator winding induction generator --- second order sliding mode
Listing 1 - 10 of 14 | << page >> |
Sort by
|