Listing 1 - 2 of 2 |
Sort by
|
Choose an application
The advancement in manufacturing technology and scientific research has improved the development of enhanced composite materials with tailored properties depending on their design requirements in many engineering fields, as well as in thermal and energy management. Some representative examples of advanced materials in many smart applications and complex structures rely on laminated composites, functionally graded materials (FGMs), and carbon-based constituents, primarily carbon nanotubes (CNTs), and graphene sheets or nanoplatelets, because of their remarkable mechanical properties, electrical conductivity and high permeability. For such materials, experimental tests usually require a large economical effort because of the complex nature of each constituent, together with many environmental, geometrical and or mechanical uncertainties of non-conventional specimens. At the same time, the theoretical and/or computational approaches represent a valid alternative for designing complex manufacts with more flexibility. In such a context, the development of advanced theoretical and computational models for composite materials and structures is a subject of active research, as explored here for a large variety of structural members, involving the static, dynamic, buckling, and damage/fracturing problems at different scales.
prestressed concrete cylinder pipe --- external prestressed steel strands --- theoretical study --- wire-breakage --- first-principles calculation --- Heusler compounds --- gapless half metals --- spin gapless semiconductor --- bi-directional functionally graded --- bolotin scheme --- dynamic stability --- elastic foundation --- porosity --- two-axis four-gimbal --- electro-optical pod --- dynamics modeling --- coarse–fine composite --- Carbon-fiber-reinforced plastics (CFRPs) --- fastener --- arc --- Joule heat --- finite element analysis (FEA) --- piezoelectric effect --- bimodular model --- functionally-graded materials --- cantilever --- vibration --- functional reinforcement --- graphene nanoplatelets --- higher-order shear deformable laminated beams --- nanocomposites --- nonlinear free vibration --- sandwich beams --- fractional calculus --- Riemann-Liouville fractional derivative --- viscoelasticity --- pipe flow --- fractional Maxwell model --- fractional Zener model --- fractional Burgers model --- Riemann–Liouville fractional derivative --- fractional Kelvin–Voigt model --- fractional Poynting–Thomson model --- curved sandwich nanobeams --- nonlocal strain gradient theory --- quasi-3D higher-order shear theory --- thermal-buckling --- FG-GPL --- GDQ --- heat transfer equation --- higher-order shear deformation theory --- buckling --- FE-GDQ --- functionally graded materials --- 3D elasticity --- 3D shell model --- steady-state hygro-elastic analysis --- Fick moisture diffusion equation --- moisture content profile --- layer-wise approach --- n/a --- coarse-fine composite --- fractional Kelvin-Voigt model --- fractional Poynting-Thomson model
Choose an application
The advancement in manufacturing technology and scientific research has improved the development of enhanced composite materials with tailored properties depending on their design requirements in many engineering fields, as well as in thermal and energy management. Some representative examples of advanced materials in many smart applications and complex structures rely on laminated composites, functionally graded materials (FGMs), and carbon-based constituents, primarily carbon nanotubes (CNTs), and graphene sheets or nanoplatelets, because of their remarkable mechanical properties, electrical conductivity and high permeability. For such materials, experimental tests usually require a large economical effort because of the complex nature of each constituent, together with many environmental, geometrical and or mechanical uncertainties of non-conventional specimens. At the same time, the theoretical and/or computational approaches represent a valid alternative for designing complex manufacts with more flexibility. In such a context, the development of advanced theoretical and computational models for composite materials and structures is a subject of active research, as explored here for a large variety of structural members, involving the static, dynamic, buckling, and damage/fracturing problems at different scales.
Technology: general issues --- History of engineering & technology --- prestressed concrete cylinder pipe --- external prestressed steel strands --- theoretical study --- wire-breakage --- first-principles calculation --- Heusler compounds --- gapless half metals --- spin gapless semiconductor --- bi-directional functionally graded --- bolotin scheme --- dynamic stability --- elastic foundation --- porosity --- two-axis four-gimbal --- electro-optical pod --- dynamics modeling --- coarse-fine composite --- Carbon-fiber-reinforced plastics (CFRPs) --- fastener --- arc --- Joule heat --- finite element analysis (FEA) --- piezoelectric effect --- bimodular model --- functionally-graded materials --- cantilever --- vibration --- functional reinforcement --- graphene nanoplatelets --- higher-order shear deformable laminated beams --- nanocomposites --- nonlinear free vibration --- sandwich beams --- fractional calculus --- Riemann-Liouville fractional derivative --- viscoelasticity --- pipe flow --- fractional Maxwell model --- fractional Zener model --- fractional Burgers model --- fractional Kelvin-Voigt model --- fractional Poynting-Thomson model --- curved sandwich nanobeams --- nonlocal strain gradient theory --- quasi-3D higher-order shear theory --- thermal-buckling --- FG-GPL --- GDQ --- heat transfer equation --- higher-order shear deformation theory --- buckling --- FE-GDQ --- functionally graded materials --- 3D elasticity --- 3D shell model --- steady-state hygro-elastic analysis --- Fick moisture diffusion equation --- moisture content profile --- layer-wise approach
Listing 1 - 2 of 2 |
Sort by
|