Narrow your search

Library

ULiège (5)

ULB (4)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

VIVES (3)

FARO (2)

More...

Resource type

book (10)


Language

English (8)

French (2)


Year
From To Submit

2022 (3)

2020 (3)

2019 (1)

2014 (1)

2009 (2)

Listing 1 - 10 of 10
Sort by

Book
Calcul des structures en bois : guide d'application des Eurocodes 5 (structures bois) et 8 (séismes)
Authors: --- ---
ISBN: 9782212678048 2212678045 9782124657247 2124657240 Year: 2019 Publisher: Paris: Eyrolles,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"Déjà très apprécié pour les maisons individuelles, le bois devient de plus en plus présent dans l'habitat collectif, les bâtiments industriels et le génie civil, bien que le béton et les structures métalliques y demeurent majoritaires. En construction bois, on verra ici comment - à l'échelon d'un pied de poteau - la liaison bois-métal-béton réunit les trois matériaux emblématiques. La validation d'un projet de bâtiment soumis à des actions repose sur deux critères : la vérification de la résistance et la vérification de la déformation. L'objectif étant d'assurer la sécurité et le confort des usagers et de limiter les déformations du bâtiment, on sait que ce sont les états limites ultimes (ELU) associés aux différentes formes de défaillance structurale qui visent à assurer la sûreté des personnes et des biens tandis que les états limites de service (ELS) correspondent à des conditions de fonctionnement des ouvrages et de confort des usagers. Solidement établies dans ce manuel professionnel de formation initiale et continue, ces connaissances y sont également illustrées par de nombreuses applications résolues. Pour sa quatrième édition, ce livre de référence a été complété par l'exposé de la liaison des ouvrages en pied de poteau. La liaison bois-métal comporte une platine d'extrémité soudée sur la face supérieure d'un profilé métallique des plaques métalliques complètent la liaison en permettant la reprise des actions de cisaillement et de soulèvement grâce aux boulons ou broches. La liaison métal-béton est assurée par une platine d'extrémité soudée sur la face inférieure du profilé métallique. Cette plaque transmet au béton les efforts de compression : elle est percée pour être fixée avec des tiges d'ancrage. Si l'on veut transmettre des actions de cisaillement importantes, on peut souder sous la platine un profilé supplémentaire, la bêche" [Source : 4e de couverture].


Book
Conception et analyse sismiques du bâtiment : guide d'application de l'Eurocode 8 à partir des règles PS 92/2004
Authors: ---
ISBN: 9782124654581 9782212138733 Year: 2014 Publisher: Paris : La Plaine Saint-Denis : Eyrolles ; Afnor,


Book
Seismic design, assessment and retrofitting of concrete buildings : based on EN-Eurocode8
Author:
ISBN: 9781402098413 Year: 2009 Publisher: [Place of publication not identified] : Springer ,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Seismic design, assessment and retrofitting of concrete buildings : based on EN-Eurocode 8
Author:
ISBN: 940073669X 1402098413 9786612292521 161583401X 1282292528 1402098421 Year: 2009 Publisher: Dordrecht : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Reflecting the historic first European seismic code, this professional book focuses on seismic design, assessment and retrofitting of concrete buildings, with thorough reference to, and application of, EN-Eurocode 8. Following the publication of EN-Eurocode 8 in 2004-05, 30 countries are now introducing this European standard for seismic design, for application in parallel with existing national standards (till March 2010) and exclusively after that. Eurocode 8 is also expected to influence standards in countries outside Europe, or at the least, to be applied there for important facilities. Owing to the increasing awareness of the threat posed by existing buildings substandard and deficient buildings and the lack of national or international standards for assessment and retrofitting, its impact in that field is expected to be major. Written by the lead person in the development of the EN-Eurocode 8, the present handbook explains the principles and rationale of seismic design according to modern codes and provides thorough guidance for the conceptual seismic design of concrete buildings and their foundations. It examines the experimental behaviour of concrete members under cyclic loading and modelling for design and analysis purposes; it develops the essentials of linear or nonlinear seismic analysis for the purposes of design, assessment and retrofitting (especially using Eurocode 8); and gives detailed guidance for modelling concrete buildings at the member and at the system level. Moreover, readers gain access to overviews of provisions of Eurocode 8, plus an understanding for them on the basis of the simple models of the element behaviour presented in the book. Also examined are the modern trends in performance- and displacement-based seismic assessment of existing buildings, comparing the relevant provisions of Eurocode 8 with those of new US prestandards, and details of the most common and popular seismic retrofitting techniques for concrete buildings and guidance for retrofitting strategies at the system level. Comprehensive walk-through examples of detailed design elucidate the application of Eurocode 8 to common situations in practical design. Examples and case studies of seismic assessment and retrofitting of a few real buildings are also presented. From the reviews: "This is a massive book that has no equal in the published literature, as far as the reviewer knows. It is dense and comprehensive and leaves nothing to chance. It is certainly taxing on the reader and the potential user, but without it, use of Eurocode 8 will be that much more difficult. In short, this is a must-read book for researchers and practitioners in Europe, and of use to readers outside of Europe too. This book will remain an indispensable backup to Eurocode 8 and its existing Designers’ Guide to EN 1998-1 and EN 1998-5 (published in 2005), for many years to come. Congratulations to the author for a very well planned scope and contents, and for a flawless execution of the plan". AMR S. ELNASHAI "The book is an impressive source of information to understand the response of reinforced concrete buildings under seismic loads with the ultimate goal of presenting and explaining the state of the art of seismic design. Underlying the contents of the book is the in-depth knowledge of the author in this field and in particular his extremely important contribution to the development of the European Design Standard EN 1998 - Eurocode 8: Design of structures for earthquake resistance. However, although Eurocode 8 is at the core of the book, many comparisons are made to other design practices, namely from the US and from Japan, thus enriching the contents and interest of the book". EDUARDO C. CARVALHO.


Book
Sustainable Structural Design for High-Performance Buildings and Infrastructures
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional design loads on buildings and structures may have different causes, including high-strain natural hazards, man-made attacks and accidents, and extreme operational conditions. All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive. Dedicated and refined methods are thus required for design, analysis, and maintenance under structures’ expected lifetimes. Major challenges are related to the structural typology and material properties. Further issues are related to the need for the mitigation or retrofitting of existing structures, or from the optimal and safe design of innovative materials/systems. Finally, in some cases, no design recommendations are available, and thus experimental investigations can have a key role in the overall process. For this SI, we have invited scientists to focus on the recent advancements and trends in the sustainable design of high-performance buildings and structures. Special attention has been given to materials and systems, but also to buildings and infrastructures that can be subjected to extreme design loads. This can be the case of exceptional natural events or unfavorable ambient conditions. The assessment of hazard and risk associated with structures and civil infrastructure systems is important for the preservation and protection of built environments. New procedures, methods, and more precise rules for safety design and the protection of sustainable structures are, however, needed.

Keywords

Technology: general issues --- History of engineering & technology --- Materials science --- analytical model --- ductile walls --- shear strength --- capacity reduction --- Eurocode 8 --- concrete --- stainless steel --- reinforcement --- temperature --- thermal expansion --- waste management --- construction demolition waste --- thermochromic --- green building material --- recycled waste material --- corrosion --- deterioration --- stirrup --- beams --- cement-based composites (CBCs) --- compressive strength --- fire exposure --- thermal boundaries --- finite element (FE) numerical modelling --- empirical formulations --- fly ash --- granulated blast-furnace slag --- palm oil fly ash --- ordinary Portland cement --- recycled ceramics --- green mortar --- alkali-activated mix design --- embodied energy --- CO2 emission --- assessment --- earthquake --- Zagreb --- case study --- cultural heritage --- seismic design --- structural glass --- q-factor --- engineering demand parameters (EDPs) --- finite element (FE) numerical models --- non-linear incremental dynamic analyses (IDA) --- cloud analysis --- linear regression --- composites --- timber --- CLT --- load-bearing glass --- friction --- FEM analysis --- beam–column joints --- shear capacity --- cyclic loading --- joint’s numerical modeling --- interior joint --- corner joint --- modified reinforcement technique (MRT) --- beam-column joint --- ferrocement --- crack --- ductility --- displacement --- reinforced concrete --- deep beam --- support vector regression --- metaheuristic optimization


Book
Sustainable Structural Design for High-Performance Buildings and Infrastructures
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional design loads on buildings and structures may have different causes, including high-strain natural hazards, man-made attacks and accidents, and extreme operational conditions. All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive. Dedicated and refined methods are thus required for design, analysis, and maintenance under structures’ expected lifetimes. Major challenges are related to the structural typology and material properties. Further issues are related to the need for the mitigation or retrofitting of existing structures, or from the optimal and safe design of innovative materials/systems. Finally, in some cases, no design recommendations are available, and thus experimental investigations can have a key role in the overall process. For this SI, we have invited scientists to focus on the recent advancements and trends in the sustainable design of high-performance buildings and structures. Special attention has been given to materials and systems, but also to buildings and infrastructures that can be subjected to extreme design loads. This can be the case of exceptional natural events or unfavorable ambient conditions. The assessment of hazard and risk associated with structures and civil infrastructure systems is important for the preservation and protection of built environments. New procedures, methods, and more precise rules for safety design and the protection of sustainable structures are, however, needed.


Book
Sustainable Structural Design for High-Performance Buildings and Infrastructures
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional design loads on buildings and structures may have different causes, including high-strain natural hazards, man-made attacks and accidents, and extreme operational conditions. All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive. Dedicated and refined methods are thus required for design, analysis, and maintenance under structures’ expected lifetimes. Major challenges are related to the structural typology and material properties. Further issues are related to the need for the mitigation or retrofitting of existing structures, or from the optimal and safe design of innovative materials/systems. Finally, in some cases, no design recommendations are available, and thus experimental investigations can have a key role in the overall process. For this SI, we have invited scientists to focus on the recent advancements and trends in the sustainable design of high-performance buildings and structures. Special attention has been given to materials and systems, but also to buildings and infrastructures that can be subjected to extreme design loads. This can be the case of exceptional natural events or unfavorable ambient conditions. The assessment of hazard and risk associated with structures and civil infrastructure systems is important for the preservation and protection of built environments. New procedures, methods, and more precise rules for safety design and the protection of sustainable structures are, however, needed.

Keywords

Technology: general issues --- History of engineering & technology --- Materials science --- analytical model --- ductile walls --- shear strength --- capacity reduction --- Eurocode 8 --- concrete --- stainless steel --- reinforcement --- temperature --- thermal expansion --- waste management --- construction demolition waste --- thermochromic --- green building material --- recycled waste material --- corrosion --- deterioration --- stirrup --- beams --- cement-based composites (CBCs) --- compressive strength --- fire exposure --- thermal boundaries --- finite element (FE) numerical modelling --- empirical formulations --- fly ash --- granulated blast-furnace slag --- palm oil fly ash --- ordinary Portland cement --- recycled ceramics --- green mortar --- alkali-activated mix design --- embodied energy --- CO2 emission --- assessment --- earthquake --- Zagreb --- case study --- cultural heritage --- seismic design --- structural glass --- q-factor --- engineering demand parameters (EDPs) --- finite element (FE) numerical models --- non-linear incremental dynamic analyses (IDA) --- cloud analysis --- linear regression --- composites --- timber --- CLT --- load-bearing glass --- friction --- FEM analysis --- beam–column joints --- shear capacity --- cyclic loading --- joint’s numerical modeling --- interior joint --- corner joint --- modified reinforcement technique (MRT) --- beam-column joint --- ferrocement --- crack --- ductility --- displacement --- reinforced concrete --- deep beam --- support vector regression --- metaheuristic optimization


Book
Buildings and Structures under Extreme Loads
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional loads on buildings and structures may have different causes, including high-strain dynamic effects due to natural hazards, man-made attacks, and accidents, as well as extreme operational conditions (severe temperature variations, humidity, etc.). All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive to external conditions. In this regard, dedicated and refined methods are required for their design, analysis, and maintenance under the expected lifetime. There are major challenges related to the structural typology and material properties with respect to the key features of the imposed design load. Further issues can be derived from the need for risk mitigation or retrofit of existing structures as well as from the optimal and safe design of innovative materials/systems. Finally, in some cases, no appropriate design recommendations are available and, thus, experimental investigations can have a key role within the overall process. In this Special Issue, original research studies, review papers, and experimental and/or numerical investigations are presented for the structural performance assessment of buildings and structures under various extreme conditions that are of interest for design.

Keywords

History of engineering & technology --- damping device --- seismic design --- design base shear --- nonlinear response history analysis --- liquid storage tank --- earthquake --- wind --- dynamic response --- fluid–solid interaction --- composite shear wall --- seismic behavior --- quasi-static test --- design strength model --- bored-pile --- global strain extensometer --- pile friction resistance --- real-time monitoring --- snow–wind combined experiment facility --- snowdrift --- field observation --- scale experiments --- similarity criterion --- underwater explosion --- composite pressure hull --- whipping --- breathing --- failure index --- laminated glass (LG) --- free vibrations --- fundamental frequency --- mechanical restraints --- field experiments --- analytical modelling --- Finite Element (FE) numerical modelling --- super large cooling tower --- whole construction process --- wind vibration coefficient --- buckling stability --- ultimate bearing capacity --- snow load --- complex roof --- EOF analysis --- characteristics decomposition --- RABT fire curve --- fire simulation --- tunnel fire --- high temperature --- fire safety --- fire accident --- vertical earthquake motion --- seismic response --- atrium-style metro station --- shaking table test --- wind characteristics --- boundary layer --- typhoon --- hurricane --- field measurement --- train derailment --- derailment containment provisions --- collision testing --- post-derailment behavior --- slurry pipe jacking --- friction resistance --- effective friction coefficient --- pipe-soil-slurry interaction --- lubrication efficiency --- concrete --- blast load --- Monte Carlo analysis --- seismic demand --- pushover --- suction caisson --- suction penetration --- soil plug --- hydraulic gradient --- visual tests --- mountainous valley --- bridge site --- boundary transition section (BTS) --- numerical simulation --- wind tunnel test --- small radius TBM interval --- equivalent continuous model --- Winkler elastic foundation beam theory --- transfer matrix method --- horizontal axis deviation --- tall timber buildings --- timber composites --- seismic retrofitting --- Eurocode 8 --- structural assessment --- masonry buildings --- earthquakes --- seismic loads --- existing structures --- reliability --- rehabilitation --- risk --- blast loading --- welded haunch connection --- steel frame structures --- non-linear dynamic analysis --- ABAQUS --- multiple degree of freedom (MDOF) --- frame ductility ratio --- n/a --- fluid-solid interaction --- snow-wind combined experiment facility


Book
Buildings and Structures under Extreme Loads
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional loads on buildings and structures may have different causes, including high-strain dynamic effects due to natural hazards, man-made attacks, and accidents, as well as extreme operational conditions (severe temperature variations, humidity, etc.). All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive to external conditions. In this regard, dedicated and refined methods are required for their design, analysis, and maintenance under the expected lifetime. There are major challenges related to the structural typology and material properties with respect to the key features of the imposed design load. Further issues can be derived from the need for risk mitigation or retrofit of existing structures as well as from the optimal and safe design of innovative materials/systems. Finally, in some cases, no appropriate design recommendations are available and, thus, experimental investigations can have a key role within the overall process. In this Special Issue, original research studies, review papers, and experimental and/or numerical investigations are presented for the structural performance assessment of buildings and structures under various extreme conditions that are of interest for design.

Keywords

damping device --- seismic design --- design base shear --- nonlinear response history analysis --- liquid storage tank --- earthquake --- wind --- dynamic response --- fluid–solid interaction --- composite shear wall --- seismic behavior --- quasi-static test --- design strength model --- bored-pile --- global strain extensometer --- pile friction resistance --- real-time monitoring --- snow–wind combined experiment facility --- snowdrift --- field observation --- scale experiments --- similarity criterion --- underwater explosion --- composite pressure hull --- whipping --- breathing --- failure index --- laminated glass (LG) --- free vibrations --- fundamental frequency --- mechanical restraints --- field experiments --- analytical modelling --- Finite Element (FE) numerical modelling --- super large cooling tower --- whole construction process --- wind vibration coefficient --- buckling stability --- ultimate bearing capacity --- snow load --- complex roof --- EOF analysis --- characteristics decomposition --- RABT fire curve --- fire simulation --- tunnel fire --- high temperature --- fire safety --- fire accident --- vertical earthquake motion --- seismic response --- atrium-style metro station --- shaking table test --- wind characteristics --- boundary layer --- typhoon --- hurricane --- field measurement --- train derailment --- derailment containment provisions --- collision testing --- post-derailment behavior --- slurry pipe jacking --- friction resistance --- effective friction coefficient --- pipe-soil-slurry interaction --- lubrication efficiency --- concrete --- blast load --- Monte Carlo analysis --- seismic demand --- pushover --- suction caisson --- suction penetration --- soil plug --- hydraulic gradient --- visual tests --- mountainous valley --- bridge site --- boundary transition section (BTS) --- numerical simulation --- wind tunnel test --- small radius TBM interval --- equivalent continuous model --- Winkler elastic foundation beam theory --- transfer matrix method --- horizontal axis deviation --- tall timber buildings --- timber composites --- seismic retrofitting --- Eurocode 8 --- structural assessment --- masonry buildings --- earthquakes --- seismic loads --- existing structures --- reliability --- rehabilitation --- risk --- blast loading --- welded haunch connection --- steel frame structures --- non-linear dynamic analysis --- ABAQUS --- multiple degree of freedom (MDOF) --- frame ductility ratio --- n/a --- fluid-solid interaction --- snow-wind combined experiment facility


Book
Buildings and Structures under Extreme Loads
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional loads on buildings and structures may have different causes, including high-strain dynamic effects due to natural hazards, man-made attacks, and accidents, as well as extreme operational conditions (severe temperature variations, humidity, etc.). All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive to external conditions. In this regard, dedicated and refined methods are required for their design, analysis, and maintenance under the expected lifetime. There are major challenges related to the structural typology and material properties with respect to the key features of the imposed design load. Further issues can be derived from the need for risk mitigation or retrofit of existing structures as well as from the optimal and safe design of innovative materials/systems. Finally, in some cases, no appropriate design recommendations are available and, thus, experimental investigations can have a key role within the overall process. In this Special Issue, original research studies, review papers, and experimental and/or numerical investigations are presented for the structural performance assessment of buildings and structures under various extreme conditions that are of interest for design.

Keywords

History of engineering & technology --- damping device --- seismic design --- design base shear --- nonlinear response history analysis --- liquid storage tank --- earthquake --- wind --- dynamic response --- fluid-solid interaction --- composite shear wall --- seismic behavior --- quasi-static test --- design strength model --- bored-pile --- global strain extensometer --- pile friction resistance --- real-time monitoring --- snow-wind combined experiment facility --- snowdrift --- field observation --- scale experiments --- similarity criterion --- underwater explosion --- composite pressure hull --- whipping --- breathing --- failure index --- laminated glass (LG) --- free vibrations --- fundamental frequency --- mechanical restraints --- field experiments --- analytical modelling --- Finite Element (FE) numerical modelling --- super large cooling tower --- whole construction process --- wind vibration coefficient --- buckling stability --- ultimate bearing capacity --- snow load --- complex roof --- EOF analysis --- characteristics decomposition --- RABT fire curve --- fire simulation --- tunnel fire --- high temperature --- fire safety --- fire accident --- vertical earthquake motion --- seismic response --- atrium-style metro station --- shaking table test --- wind characteristics --- boundary layer --- typhoon --- hurricane --- field measurement --- train derailment --- derailment containment provisions --- collision testing --- post-derailment behavior --- slurry pipe jacking --- friction resistance --- effective friction coefficient --- pipe-soil-slurry interaction --- lubrication efficiency --- concrete --- blast load --- Monte Carlo analysis --- seismic demand --- pushover --- suction caisson --- suction penetration --- soil plug --- hydraulic gradient --- visual tests --- mountainous valley --- bridge site --- boundary transition section (BTS) --- numerical simulation --- wind tunnel test --- small radius TBM interval --- equivalent continuous model --- Winkler elastic foundation beam theory --- transfer matrix method --- horizontal axis deviation --- tall timber buildings --- timber composites --- seismic retrofitting --- Eurocode 8 --- structural assessment --- masonry buildings --- earthquakes --- seismic loads --- existing structures --- reliability --- rehabilitation --- risk --- blast loading --- welded haunch connection --- steel frame structures --- non-linear dynamic analysis --- ABAQUS --- multiple degree of freedom (MDOF) --- frame ductility ratio

Listing 1 - 10 of 10
Sort by