Listing 1 - 10 of 13 << page
of 2
>>
Sort by

Book
Singularly perturbed methods for nonlinear elliptic problems
Authors: --- ---
ISBN: 1108858473 1108872638 Year: 2021 Publisher: Cambridge : Cambridge University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This introduction to the singularly perturbed methods in the nonlinear elliptic partial differential equations emphasises the existence and local uniqueness of solutions exhibiting concentration property. The authors avoid using sophisticated estimates and explain the main techniques by thoroughly investigating two relatively simple but typical non-compact elliptic problems. Each chapter then progresses to other related problems to help the reader learn more about the general theories developed from singularly perturbed methods. Designed for PhD students and junior mathematicians intending to do their research in the area of elliptic differential equations, the text covers three main topics. The first is the compactness of the minimization sequences, or the Palais-Smale sequences, or a sequence of approximate solutions; the second is the construction of peak or bubbling solutions by using the Lyapunov-Schmidt reduction method; and the third is the local uniqueness of these solutions.


Book
Korteweg–de Vries Flows with General Initial Conditions
Author:
ISBN: 9789819997381 Year: 2024 Publisher: Singapore : Springer Nature Singapore : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Large numbers of studies of the KdV equation have appeared since the pioneering paper by Gardner, Greene, Kruskal, and Miura in 1967. Most of those works have employed the inverse spectral method for 1D Schrödinger operators or an advanced Fourier analysis. Although algebraic approaches have been discovered by Hirota–Sato and Marchenko independently, those have not been fully investigated and analyzed. The present book offers a new approach to the study of the KdV equation, which treats decaying initial data and oscillating data in a unified manner. The author’s method is to represent the tau functions introduced by Hirota–Sato and developed by Segal–Wilson later in terms of the Weyl–Titchmarsh functions (WT functions, in short) for the underlying Schrödinger operators. The main result is stated by a class of WT functions satisfying some of the asymptotic behavior along a curve approaching the spectrum of the Schrödinger operators at +∞ in an order of -(n-1/2) for the nth KdV equation. This class contains many oscillating potentials (initial data) as well as decaying ones. Especially bounded smooth ergodic potentials are included, and under certain conditions on the potentials, the associated Schrödinger operators have dense point spectrum. This provides a mathematical foundation for the study of the soliton turbulence problem initiated by Zakharov, which was the author’s motivation for extending the class of initial data in this book. A large class of almost periodic potentials is also included in these ergodic potentials. P. Deift has conjectured that any solutions to the KdV equation starting from nearly periodic initial data are almost periodic in time. Therefore, our result yields a foundation for this conjecture. For the reader’s benefit, the author has included here (1) a basic knowledge of direct and inverse spectral problem for 1D Schrödinger operators, including the notion of the WT functions; (2) Sato’s Grassmann manifold method revised by Segal–Wilson; and (3) basic results of ergodic Schrödinger operators.


Multi
Korteweg–de Vries Flows with General Initial Conditions
Author:
ISBN: 9789819997381 9789819997374 9789819997398 9789819997404 Year: 2024 Publisher: Singapore : Springer Nature Singapore : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Large numbers of studies of the KdV equation have appeared since the pioneering paper by Gardner, Greene, Kruskal, and Miura in 1967. Most of those works have employed the inverse spectral method for 1D Schrödinger operators or an advanced Fourier analysis. Although algebraic approaches have been discovered by Hirota–Sato and Marchenko independently, those have not been fully investigated and analyzed. The present book offers a new approach to the study of the KdV equation, which treats decaying initial data and oscillating data in a unified manner. The author’s method is to represent the tau functions introduced by Hirota–Sato and developed by Segal–Wilson later in terms of the Weyl–Titchmarsh functions (WT functions, in short) for the underlying Schrödinger operators. The main result is stated by a class of WT functions satisfying some of the asymptotic behavior along a curve approaching the spectrum of the Schrödinger operators at +∞ in an order of -(n-1/2) for the nth KdV equation. This class contains many oscillating potentials (initial data) as well as decaying ones. Especially bounded smooth ergodic potentials are included, and under certain conditions on the potentials, the associated Schrödinger operators have dense point spectrum. This provides a mathematical foundation for the study of the soliton turbulence problem initiated by Zakharov, which was the author’s motivation for extending the class of initial data in this book. A large class of almost periodic potentials is also included in these ergodic potentials. P. Deift has conjectured that any solutions to the KdV equation starting from nearly periodic initial data are almost periodic in time. Therefore, our result yields a foundation for this conjecture. For the reader’s benefit, the author has included here (1) a basic knowledge of direct and inverse spectral problem for 1D Schrödinger operators, including the notion of the WT functions; (2) Sato’s Grassmann manifold method revised by Segal–Wilson; and (3) basic results of ergodic Schrödinger operators.


Periodical
Annales de l'Institut Henri Poincaré: section C: analyse non lineaire
Author:
ISSN: 02941449 18731430 Publisher: Paris


Book
Advances in Numerical Methods for Hyperbolic Balance Laws and Related Problems
Authors: --- ---
ISBN: 3031298756 3031298748 Year: 2023 Publisher: Cham : Springer Nature Switzerland : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

A broad range of phenomena in science and technology can be described by non-linear partial differential equations characterized by systems of conservation laws with source terms. Well known examples are hyperbolic systems with source terms, kinetic equations, and convection-reaction-diffusion equations. This book collects research advances in numerical methods for hyperbolic balance laws and kinetic equations together with related modelling aspects. All the contributions are based on the talks of the speakers of the Young Researchers’ Conference “Numerical Aspects of Hyperbolic Balance Laws and Related Problems”, hosted at the University of Verona, Italy, in December 2021.


Book
Linearization of Nonlinear Control Systems
Authors: ---
ISBN: 9789811936432 Year: 2022 Publisher: Singapore Springer Nature Singapore :Imprint: Springer

Listing 1 - 10 of 13 << page
of 2
>>
Sort by