Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULiège (3)

VIVES (3)

Vlaams Parlement (3)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2022 (1)

2020 (3)

2018 (3)

Listing 1 - 7 of 7
Sort by

Book
Pathogenic Advances and Therapeutic Perspectives for Eosinophilic Inflammation
Authors: ---
Year: 2018 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

With the recent approval of the first eosinophil-depleting therapeutic agents targeting the IL-5 pathway for treatment of severe eosinophilic asthma, eosinophils and eosinophilic disorders are in the limelight. Indeed, setbacks during clinical development of these compounds have revealed how much remains to be known about eosinophil biology in vivo, and have nurtured profuse research both on basic eosinophil biology and on pathogenic disease mechanisms, in order to better delineate the most meaningful targets for innovative therapeutic strategies. On one hand, variable degrees of eosinophil depletion observed in some compartments during IL-5-targeted treatment indicate that certain eosinophil subsets may not rely on this cytokine and/or that other important pro-eosinophilic mediators and signaling pathways are operative in vivo. On the other hand, it is increasingly clear that disorders involving eosinophils such as asthma are the final outcome of complex interactions between diverse cell types and mediators, beyond eosinophils and IL-5. These include type 2 helper T (Th2) cells and innate lymphoid cells, mast cells, and a variety of factors that either activate eosinophils or are released by them. Although a considerable amount of research has focused on asthma because it is a common condition and because management of severe asthma remains a major challenge, several rare eosinophilic disorders with more homogenous features have proven to be extremely useful models to reach a better understanding of the involvement of eosinophils in tissue damage and dysfunction, and of the micro-environmental interactions operating within the complex network of eosinophilic inflammation. Unraveling this interplay has resulted in advances in the development of molecular tools to detect disease subsets and to monitor therapeutic responses, and in identification of promising new therapeutic targets. This Research Topic dedicated to eosinophilic conditions covers aspects of the biology of eosinophils and closely related cells of particular relevance for drug development, reports on translational research investigating pathogenic mechanisms of specific eosinophilic disorders in humans that will likely result in significant changes in the way patients are managed, and presents an overview of the current advancement of targeted drug development for these conditions, with a special focus on asthma.


Book
Pathogenic Advances and Therapeutic Perspectives for Eosinophilic Inflammation
Authors: ---
Year: 2018 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

With the recent approval of the first eosinophil-depleting therapeutic agents targeting the IL-5 pathway for treatment of severe eosinophilic asthma, eosinophils and eosinophilic disorders are in the limelight. Indeed, setbacks during clinical development of these compounds have revealed how much remains to be known about eosinophil biology in vivo, and have nurtured profuse research both on basic eosinophil biology and on pathogenic disease mechanisms, in order to better delineate the most meaningful targets for innovative therapeutic strategies. On one hand, variable degrees of eosinophil depletion observed in some compartments during IL-5-targeted treatment indicate that certain eosinophil subsets may not rely on this cytokine and/or that other important pro-eosinophilic mediators and signaling pathways are operative in vivo. On the other hand, it is increasingly clear that disorders involving eosinophils such as asthma are the final outcome of complex interactions between diverse cell types and mediators, beyond eosinophils and IL-5. These include type 2 helper T (Th2) cells and innate lymphoid cells, mast cells, and a variety of factors that either activate eosinophils or are released by them. Although a considerable amount of research has focused on asthma because it is a common condition and because management of severe asthma remains a major challenge, several rare eosinophilic disorders with more homogenous features have proven to be extremely useful models to reach a better understanding of the involvement of eosinophils in tissue damage and dysfunction, and of the micro-environmental interactions operating within the complex network of eosinophilic inflammation. Unraveling this interplay has resulted in advances in the development of molecular tools to detect disease subsets and to monitor therapeutic responses, and in identification of promising new therapeutic targets. This Research Topic dedicated to eosinophilic conditions covers aspects of the biology of eosinophils and closely related cells of particular relevance for drug development, reports on translational research investigating pathogenic mechanisms of specific eosinophilic disorders in humans that will likely result in significant changes in the way patients are managed, and presents an overview of the current advancement of targeted drug development for these conditions, with a special focus on asthma.


Book
Pathogenic Advances and Therapeutic Perspectives for Eosinophilic Inflammation
Authors: ---
Year: 2018 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

With the recent approval of the first eosinophil-depleting therapeutic agents targeting the IL-5 pathway for treatment of severe eosinophilic asthma, eosinophils and eosinophilic disorders are in the limelight. Indeed, setbacks during clinical development of these compounds have revealed how much remains to be known about eosinophil biology in vivo, and have nurtured profuse research both on basic eosinophil biology and on pathogenic disease mechanisms, in order to better delineate the most meaningful targets for innovative therapeutic strategies. On one hand, variable degrees of eosinophil depletion observed in some compartments during IL-5-targeted treatment indicate that certain eosinophil subsets may not rely on this cytokine and/or that other important pro-eosinophilic mediators and signaling pathways are operative in vivo. On the other hand, it is increasingly clear that disorders involving eosinophils such as asthma are the final outcome of complex interactions between diverse cell types and mediators, beyond eosinophils and IL-5. These include type 2 helper T (Th2) cells and innate lymphoid cells, mast cells, and a variety of factors that either activate eosinophils or are released by them. Although a considerable amount of research has focused on asthma because it is a common condition and because management of severe asthma remains a major challenge, several rare eosinophilic disorders with more homogenous features have proven to be extremely useful models to reach a better understanding of the involvement of eosinophils in tissue damage and dysfunction, and of the micro-environmental interactions operating within the complex network of eosinophilic inflammation. Unraveling this interplay has resulted in advances in the development of molecular tools to detect disease subsets and to monitor therapeutic responses, and in identification of promising new therapeutic targets. This Research Topic dedicated to eosinophilic conditions covers aspects of the biology of eosinophils and closely related cells of particular relevance for drug development, reports on translational research investigating pathogenic mechanisms of specific eosinophilic disorders in humans that will likely result in significant changes in the way patients are managed, and presents an overview of the current advancement of targeted drug development for these conditions, with a special focus on asthma.


Book
Food Allergies in Modern Life
Authors: --- ---
ISBN: 3036551689 3036551670 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Food allergy, a specific immune response that occurs reproducibly upon exposure to a food allergen, is an increasing public health problem, causing a significant burden for affected patients, resulting in dietary restrictions, fear of accidental ingestions and related risk of severe reactions, and reduced quality of life. Clinical presentation ranges from mild to life-threatening symptoms. Component-resolved diagnosis with recombinant allergens has improved the diagnosis and, consequently, clinical management. Currently, there is no specific treatment for food allergy, so the only available management is limited to strict dietary avoidance, education on prompt recognition of symptoms, and emergency treatment of adverse reaction. In parallel, novel knowledge on the pathogenesis of food allergy is opening the way to new trials investigating several allergen-specific and allergen non-specific therapies, aiming to prevent the development of food allergy and acquire a persistent food tolerance.


Book
Semisolid Dosage
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Even in ancient times, semi-solid preparations for cutaneous application, popularly known as ointments, played an important role in human society. An advanced scientific investigation of “ointments” as dosage forms was initiated in the 1950s. It was only from then on that the intensive physico-chemical characterization of ointments as well as the inclusion of dermatological aspects led to a comprehensive understanding of the various interactions between the vehicle, the active ingredient and the skin. From then on, many researchers were involved in optimizing semi-solid formulations with respect to continuously changing therapeutic and patient needs. Aspects that have been dealt with were the optimization of dermato-biopharmaceutical properties and many different issues related to patient compliance, such as skin tolerance, applicability, and cosmetic appeal. Moreover, processing technology has been improved and analytical techniques were developed and refined in order to enable the improved characterization of the formulation itself as well as its interaction with the skin. This Special Issue serves to highlight and capture the contemporary progress and current research on semi-solid formulations as dermal drug delivery systems. We invite articles on all aspects of semi-solid formulations, highlighting the research currently undertaken to improve and better understand these complex drug delivery systems with respect to their formulation, processing and characterization issues.

Keywords

Medicine --- dermal drug delivery --- diffusion cell --- Franz diffusion --- Skin-PAMPA --- Strat-M® membrane --- nanocarrier --- nonivamide --- methyl cellulose --- skin penetration --- substantivity --- thermogel --- tacrolimus formulation --- nanogels --- drug delivery --- human excised skin --- Jurkat cells --- in situ hydrogel-forming powder --- nitric oxide-releasing formulation --- S-nitrosoglutathione (GSNO) --- antibacterial --- wound dressing --- wound healing --- dermal delivery --- porcine skin --- in vitro permeation --- methadone --- pain --- in vitro --- permeation --- niacinamide --- solvent --- PAMPA --- skin --- curcumin --- deformable liposomes --- liposome surface charge --- hydrogel --- chitosan --- wound therapy --- IVRT --- metronidazole --- topical cream --- semisolid dosage forms --- sameness --- FDA’s SUPAC-SS guidance --- acceptance criteria --- positive and negative controls --- discriminatory ability --- Amphotericin B --- Sepigel 305® --- Leishmania infantum --- cutaneous leishmaniasis --- topical treatment --- birch bark extract --- oleogels --- hydrogen bonding --- triterpene --- rheology --- gel strength --- eosinophilic esophagitis --- budesonide --- xanthan gum --- guar gum --- mucoadhesion --- esophagus permeability --- rheological characterization --- pediatric medicine --- compounded preparation --- non-ionic emulsifiers --- intercellular lipids --- confocal Raman spectroscopy (CRS) --- polyethylene glycol alkyl ethers --- polyethylene glycol sorbitan fatty acid esters --- n/a --- FDA's SUPAC-SS guidance


Book
Semisolid Dosage
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Even in ancient times, semi-solid preparations for cutaneous application, popularly known as ointments, played an important role in human society. An advanced scientific investigation of “ointments” as dosage forms was initiated in the 1950s. It was only from then on that the intensive physico-chemical characterization of ointments as well as the inclusion of dermatological aspects led to a comprehensive understanding of the various interactions between the vehicle, the active ingredient and the skin. From then on, many researchers were involved in optimizing semi-solid formulations with respect to continuously changing therapeutic and patient needs. Aspects that have been dealt with were the optimization of dermato-biopharmaceutical properties and many different issues related to patient compliance, such as skin tolerance, applicability, and cosmetic appeal. Moreover, processing technology has been improved and analytical techniques were developed and refined in order to enable the improved characterization of the formulation itself as well as its interaction with the skin. This Special Issue serves to highlight and capture the contemporary progress and current research on semi-solid formulations as dermal drug delivery systems. We invite articles on all aspects of semi-solid formulations, highlighting the research currently undertaken to improve and better understand these complex drug delivery systems with respect to their formulation, processing and characterization issues.

Keywords

dermal drug delivery --- diffusion cell --- Franz diffusion --- Skin-PAMPA --- Strat-M® membrane --- nanocarrier --- nonivamide --- methyl cellulose --- skin penetration --- substantivity --- thermogel --- tacrolimus formulation --- nanogels --- drug delivery --- human excised skin --- Jurkat cells --- in situ hydrogel-forming powder --- nitric oxide-releasing formulation --- S-nitrosoglutathione (GSNO) --- antibacterial --- wound dressing --- wound healing --- dermal delivery --- porcine skin --- in vitro permeation --- methadone --- pain --- in vitro --- permeation --- niacinamide --- solvent --- PAMPA --- skin --- curcumin --- deformable liposomes --- liposome surface charge --- hydrogel --- chitosan --- wound therapy --- IVRT --- metronidazole --- topical cream --- semisolid dosage forms --- sameness --- FDA’s SUPAC-SS guidance --- acceptance criteria --- positive and negative controls --- discriminatory ability --- Amphotericin B --- Sepigel 305® --- Leishmania infantum --- cutaneous leishmaniasis --- topical treatment --- birch bark extract --- oleogels --- hydrogen bonding --- triterpene --- rheology --- gel strength --- eosinophilic esophagitis --- budesonide --- xanthan gum --- guar gum --- mucoadhesion --- esophagus permeability --- rheological characterization --- pediatric medicine --- compounded preparation --- non-ionic emulsifiers --- intercellular lipids --- confocal Raman spectroscopy (CRS) --- polyethylene glycol alkyl ethers --- polyethylene glycol sorbitan fatty acid esters --- n/a --- FDA's SUPAC-SS guidance


Book
Semisolid Dosage
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Even in ancient times, semi-solid preparations for cutaneous application, popularly known as ointments, played an important role in human society. An advanced scientific investigation of “ointments” as dosage forms was initiated in the 1950s. It was only from then on that the intensive physico-chemical characterization of ointments as well as the inclusion of dermatological aspects led to a comprehensive understanding of the various interactions between the vehicle, the active ingredient and the skin. From then on, many researchers were involved in optimizing semi-solid formulations with respect to continuously changing therapeutic and patient needs. Aspects that have been dealt with were the optimization of dermato-biopharmaceutical properties and many different issues related to patient compliance, such as skin tolerance, applicability, and cosmetic appeal. Moreover, processing technology has been improved and analytical techniques were developed and refined in order to enable the improved characterization of the formulation itself as well as its interaction with the skin. This Special Issue serves to highlight and capture the contemporary progress and current research on semi-solid formulations as dermal drug delivery systems. We invite articles on all aspects of semi-solid formulations, highlighting the research currently undertaken to improve and better understand these complex drug delivery systems with respect to their formulation, processing and characterization issues.

Keywords

Medicine --- dermal drug delivery --- diffusion cell --- Franz diffusion --- Skin-PAMPA --- Strat-M® membrane --- nanocarrier --- nonivamide --- methyl cellulose --- skin penetration --- substantivity --- thermogel --- tacrolimus formulation --- nanogels --- drug delivery --- human excised skin --- Jurkat cells --- in situ hydrogel-forming powder --- nitric oxide-releasing formulation --- S-nitrosoglutathione (GSNO) --- antibacterial --- wound dressing --- wound healing --- dermal delivery --- porcine skin --- in vitro permeation --- methadone --- pain --- in vitro --- permeation --- niacinamide --- solvent --- PAMPA --- skin --- curcumin --- deformable liposomes --- liposome surface charge --- hydrogel --- chitosan --- wound therapy --- IVRT --- metronidazole --- topical cream --- semisolid dosage forms --- sameness --- FDA's SUPAC-SS guidance --- acceptance criteria --- positive and negative controls --- discriminatory ability --- Amphotericin B --- Sepigel 305® --- Leishmania infantum --- cutaneous leishmaniasis --- topical treatment --- birch bark extract --- oleogels --- hydrogen bonding --- triterpene --- rheology --- gel strength --- eosinophilic esophagitis --- budesonide --- xanthan gum --- guar gum --- mucoadhesion --- esophagus permeability --- rheological characterization --- pediatric medicine --- compounded preparation --- non-ionic emulsifiers --- intercellular lipids --- confocal Raman spectroscopy (CRS) --- polyethylene glycol alkyl ethers --- polyethylene glycol sorbitan fatty acid esters --- dermal drug delivery --- diffusion cell --- Franz diffusion --- Skin-PAMPA --- Strat-M® membrane --- nanocarrier --- nonivamide --- methyl cellulose --- skin penetration --- substantivity --- thermogel --- tacrolimus formulation --- nanogels --- drug delivery --- human excised skin --- Jurkat cells --- in situ hydrogel-forming powder --- nitric oxide-releasing formulation --- S-nitrosoglutathione (GSNO) --- antibacterial --- wound dressing --- wound healing --- dermal delivery --- porcine skin --- in vitro permeation --- methadone --- pain --- in vitro --- permeation --- niacinamide --- solvent --- PAMPA --- skin --- curcumin --- deformable liposomes --- liposome surface charge --- hydrogel --- chitosan --- wound therapy --- IVRT --- metronidazole --- topical cream --- semisolid dosage forms --- sameness --- FDA's SUPAC-SS guidance --- acceptance criteria --- positive and negative controls --- discriminatory ability --- Amphotericin B --- Sepigel 305® --- Leishmania infantum --- cutaneous leishmaniasis --- topical treatment --- birch bark extract --- oleogels --- hydrogen bonding --- triterpene --- rheology --- gel strength --- eosinophilic esophagitis --- budesonide --- xanthan gum --- guar gum --- mucoadhesion --- esophagus permeability --- rheological characterization --- pediatric medicine --- compounded preparation --- non-ionic emulsifiers --- intercellular lipids --- confocal Raman spectroscopy (CRS) --- polyethylene glycol alkyl ethers --- polyethylene glycol sorbitan fatty acid esters

Listing 1 - 7 of 7
Sort by