Narrow your search

Library

ULiège (1)


Resource type

dissertation (1)


Language

English (1)


Year
From To Submit

2017 (1)

Listing 1 - 1 of 1
Sort by

Dissertation
Master thesis : Implementation of a melting/solidification process with the enthalpy method
Authors: --- --- ---
Year: 2017 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Phase change materials (PCMs) are of high interest in thermal storage and thermal management applications for the earth and for space environments. Nevertheless, their functionality is intrinsically attached to phase change processes, which, from experience, it is known that they are computationally challenging. The present project arises with the intention to give a numerical solution to this problematic.

A solver based on the enthalpy-porosity technique, capable to deal with diffusive-convective phase change has been adapted for OpenFOAM 4.1. For the implementation of the enthalpy technique, the work of Voller Mushy has been closely followed, and a detailed explanation of the equations employed and the assumptions that support them is given. Furthermore, the numerical approach is also specified, with a close attention to the discretization process based on the Finite Volume Method (FVM). The solver algorithm is provided with a deep explanation of its implementation in OpenFOAM. Furthermore, an analysis of the convergence of the numerical solution is provided.

Moreover, the works of several authors, have been employed to help in some aspects of the implementation and validation of the solver. As part of this validation, the controversial case of the melting of pure Gallium in a rectangular cavity is computed with the OpenFOAM solver. The author gives some discussion about the results obtained and compares them with the existing literature in order to assess the accuracy of the mathematical model employed.

The last part of the project employs the customize solver to analyze the thermal behaviour of a PCM during melting. Three different cases are proposed and tested for two different geometries: one under gravity conditions, where natural convection is part of the heat transfer process, and another two independent of gravity or proper of micro-gravity environments: a pure conductive case and a case with Bénard-Marangoni convection.

Listing 1 - 1 of 1
Sort by