Listing 1 - 10 of 933 | << page >> |
Sort by
|
Choose an application
The heat transfer and analysis on heat pipe and exchanger, and thermal stress are significant issues in a design of wide range of industrial processes and devices. This book includes 17 advanced and revised contributions, and it covers mainly (1) thermodynamic effects and thermal stress, (2) heat pipe and exchanger, (3) gas flow and oxidation, and (4) heat analysis. The first section introduces spontaneous heat flow, thermodynamic effect of groundwater, stress on vertical cylindrical vessel, transient temperature fields, principles of thermoelectric conversion, and transformer performances. The second section covers thermosyphon heat pipe, shell and tube heat exchangers, heat transfer in bundles of transversely-finned tubes, fired heaters for petroleum refineries, and heat exchangers of irreversible power cycles. The third section includes gas flow over a cylinder, gas-solid flow applications, oxidation exposure, effects of buoyancy, and application of energy and thermal performance index on energy efficiency. The forth section presents integral transform and green function methods, micro capillary pumped loop, influence of polyisobutylene additions, synthesis of novel materials, and materials for electromagnetic launchers. The advanced ideas and information described here will be fruitful for the readers to find a sustainable solution in an industrialized society.
Choose an application
Thermodynamics is one of the most exciting branches of physical chemistry which has greatly contributed to the modern science. Being concentrated on a wide range of applications of thermodynamics, this book gathers a series of contributions by the finest scientists in the world, gathered in an orderly manner. It can be used in post-graduate courses for students and as a reference book, as it is written in a language pleasing to the reader. It can also serve as a reference material for researchers to whom the thermodynamics is one of the area of interest.
Materials science. --- Material science --- Physical sciences --- Engineering thermodynamics
Choose an application
Thermal power plants are one of the most important process industries for engineering professionals. Over the past few decades, the power sector has been facing a number of critical issues. However, the most fundamental challenge is meeting the growing power demand in sustainable and efficient ways. Practicing power plant engineers not only look after operation and maintenance of the plant, but also look after a range of activities, including research and development, starting from power generation, to environmental assessment of power plants. The book Thermal Power Plants covers features, operational issues, advantages, and limitations of power plants, as well as benefits of renewable power generation. It also introduces thermal performance analysis, fuel combustion issues, performance monitoring and modelling, plants health monitoring, including component fault diagnosis and prognosis, functional analysis, economics of plant operation and maintenance, and environmental aspects. This book addresses several issues related to both coal fired and gas turbine power plants. The book is suitable for both undergraduate and research for higher degree students, and of course, for practicing power plant engineers.
Materials science. --- Material science --- Physical sciences --- Engineering thermodynamics
Choose an application
The content of this book covers several up-to-date approaches in the heat conduction theory such as inverse heat conduction problems, non-linear and non-classic heat conduction equations, coupled thermal and electromagnetic or mechanical effects and numerical methods for solving heat conduction equations as well. The book is comprised of 14 chapters divided into four sections. In the first section inverse heat conduction problems are discuss. The first two chapters of the second section are devoted to construction of analytical solutions of nonlinear heat conduction problems. In the last two chapters of this section wavelike solutions are attained.The third section is devoted to combined effects of heat conduction and electromagnetic interactions in plasmas or in pyroelectric material elastic deformations and hydrodynamics. Two chapters in the last section are dedicated to numerical methods for solving heat conduction problems.
Materials science. --- Material science --- Physical sciences --- Engineering thermodynamics
Choose an application
The theoretical analysis and modeling of heat and mass transfer rates produced in evaporation and condensation processes are significant issues in a design of wide range of industrial processes and devices. This book includes 25 advanced and revised contributions, and it covers mainly (1) evaporation and boiling, (2) condensation and cooling, (3) heat transfer and exchanger, and (4) fluid and flow. The readers of this book will appreciate the current issues of modeling on evaporation, water vapor condensation, heat transfer and exchanger, and on fluid flow in different aspects. The approaches would be applicable in various industrial purposes as well. The advanced idea and information described here will be fruitful for the readers to find a sustainable solution in an industrialized society.
Materials science. --- Material science --- Physical sciences --- Engineering thermodynamics
Choose an application
This book presents the selection of various high level contributions involving thermodynamics. The book goes from the fundamentals up to several applications in different scientific fields. The content of the book has been classified in six sections: Classical Thermodynamics, Statistical Thermodynamics, Property Prediction in Thermodynamics, Material and Products, Non Equilibrium and Thermodynamics in Diverse Areas. The classification of the book aims to provide to the reader the facility of finding the desired topic included in the book. It is expected that this collection of chapters will contribute to the state of the art in the thermodynamics area.
Materials science. --- Material science --- Physical sciences --- Engineering thermodynamics
Choose an application
Shape memory alloys have become in the past decades a well established research subject. However, the complex relations between properties and structure have created a continuously growing interest for a deeper insight all this time. The complexity of relationships between structure and properties is mostly related to the fact that strong ?multidimensional? interactions are taking place: from the early studies focusing on the thermal and/or mechanical induced phase transformations to the more recent findings on the magnetically induced structural changes. On the other hand, these singular behavioral characteristics have driven a great industrial interest due to the innovative aspects that the applications of shape memory alloys may provide. This makes this subject a highly attractive source of continuous studies, ranging from basics crystallography and thermodynamics to mechanical analysis and electrical and magnetic properties characterization. In this book, a group of recent studies is compiled focusing on a wide range of topics from processing to the relationship between the structure and properties, as well as new applications.
Shape memory alloys. --- Alloys --- Smart materials --- Engineering thermodynamics
Choose an application
Heat transfer calculations in different aspects of engineering applications are essential to aid engineering design of heat exchanging equipment. Minimizing of computational time is a challenging task faced by researchers and users. Methodology of calculations in some application areas are incorporated in this book, such as differential analysis of heat recoveries with CFD in a tube bank, heating and ventilation of equipment and methods for analytical solution of nonlinear problems. Numerical analysis is the prerequisite of design and for the manufacture of heat exchanging equipment. Some numerical and experimental information are presented with utmost skill. Similarly, the analytical solution of heat transfer is touched in this book. Study of heat transfer phenomena and applications are equally emphasized in this issue.
Materials science. --- Material science --- Physical sciences --- Engineering thermodynamics
Choose an application
Heat pipes are considered as an effective thermal solution, particularly in high heat flux applications and in situations where there is a combination of nonuniform heat loading, limited airflow over the heat-generating components, and space or weight constraints. This book is intended to explore some of the recent advances in heat pipes and their applications in thermal systems. The first chapter is an introductory chapter about the recent advances in heat pipes in general. The second chapter is about thermosyphon heat pipe technology; working principles, advantages, and disadvantages; application ranges; and using computational fluid dynamics in modeling thermosyphons. The third chapter is about recent research into loop heat pipes (LHPs). The last chapter presents a novel liquid-vapor separator-incorporated gravitational LHP.
Materials science. --- Material science --- Physical sciences --- Engineering thermodynamics
Choose an application
Heat treatment and surface engineering are seen as crucial elements in the design and manufacture of strategic components in a wide range of market sectors and industries including air, sea and land transportation, energy production, mining, defense or agriculture. This book offers a broad review of recent global developments in an application of thermal and thermochemical processing to modify the microstructure and properties of a wide range of engineering materials. Although there is no formal partition of the book, chapters represent two different application areas of heat treatment. The first group covers the conventional heat treatment with processing of bearing rings, wrought and cast steels, aluminum alloys, fundamentals of thermochemical treatment, details of carbonitriding and a design of cooling units. The second group describes a use of non-conventional thermal routes during manufacturing cycles of such materials as vanadium carbides, titanium dioxide, metallic glasses, superconducting ceramics, nanoparticles, metal oxides, battery materials and slag mortars. A mixture of conventional and novel applications, exploring a variety of processes employing heating, quenching and thermal diffusion, makes the book very useful for a broad audience of scientists and engineers from academia and industry.
Materials science. --- Material science --- Physical sciences --- Engineering thermodynamics
Listing 1 - 10 of 933 | << page >> |
Sort by
|