Narrow your search

Library

ULiège (4)

KU Leuven (3)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

VIVES (1)

VUB (1)


Resource type

book (7)


Language

English (7)


Year
From To Submit

2017 (2)

2014 (2)

2006 (1)

1998 (1)

1995 (1)

Listing 1 - 7 of 7
Sort by

Book
The ray and wave theory of lenses
Author:
ISBN: 0511470746 Year: 1995 Publisher: Cambridge : Cambridge University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Calculations on lens systems are often marred by the unjustifiable use of the small-angle approximation. This book describes in detail how the ray and wave pictures of lens behaviour can be combined and developed into a theory capable of dealing with the large angles encountered in real optical systems. A distinct advantage of this approach is that Fourier optics appears naturally, in a form valid for arbitrarily large angles. The book begins with extensive reviews of geometrical optiks, eikonal functions and the theory of wave propagation. The propagation of waves through lenses is then treated by exploiting the close connection between eikonal function theory and the stationary phase approximation. Aberrations are then discussed, and the book concludes with various applications in lens design and analysis, including chapters on laser beam propagation and diffractive optical elements. Throughout, special emphasis is placed on the intrinsic limitations of lens performance. The many practical insights it contains, as well as the exercises with their solutions, will be of interest to graduate students as well as to anyone working in optical design and engineering.


Book
Elastic differential cross sections
Authors: --- ---
Year: 2014 Publisher: Hampton, Virginia : National Aeronautics and Space Administration, Langley Research Center ,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Theoretical global seismology
Authors: ---
ISBN: 0691216150 Year: 1998 Publisher: Princeton, New Jersey : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

After every major earthquake, the Earth rings like a bell for several days. These free oscillations of the Earth and the related propagating body and surface waves are routinely detected at broad-band seismographic stations around the world. In this book, F. A. Dahlen and Jeroen Tromp present an advanced theoretical treatment of global seismology, describing the normal-mode, body-wave, and surface-wave methods employed in the determination of the Earth's three-dimensional internal structure and the source mechanisms of earthquakes. The authors provide a survey of both the history of global seismological research and the major theoretical and observational advances made in the past decade. The book is divided into three parts. In the first, "Foundations," Dahlen and Tromp give an extensive introduction to continuum mechanics and discuss the representation of seismic sources and the free oscillations of a completely general Earth model. The resulting theory should provide the basis for future scientific discussions of the elastic-gravitational deformation of the Earth. The second part, "The Spherical Earth," is devoted to the free oscillations of a spherically symmetric Earth. In the third part, "The Aspherical Earth," the authors discuss methods of dealing with the Earth's three-dimensional heterogeneity. The book is concerned primarily with the forward problem of global seismology--detailing how synthetic seismograms and spectra may be calculated and interpreted. As a long-needed unification of theories in global seismology, the book will be important to graduate students and to professional seismologists, geodynamicists, and geomagnetists, as well as to astronomers who study the free oscillations of the Sun and other stars.

Light scattering by optically soft particles : theory and applications
Authors: ---
ISBN: 1280617276 9786610617272 354037664X 3540239103 3642444040 Year: 2006 Publisher: Berlin ; New York : Chichester, UK : Springer ; Published in association with Praxis Publishing,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The present monograph deals with a particular class of approximation methods in the context of light scattering by small particles. This class of approximations has been termed as eikonal or soft particle approximations. The eikonal approximation was studied extensively in the potential scattering and then adopted in optical scattering problems. In this context, the eikonal and other soft particle approximations pertain to scatterers whose relative refractive index compared to surrounding medium is close to unity. The study of these approximations is very important because soft particles occur abundantly in nature. For example, the particles that occur in ocean optics, biomedical optics, atmospheric optics and in many industrial applications can be classified as soft particles. This book was written in recognition of the long-standing and current interest in the field of scattering approximations for soft particles. It should prove to be a useful addition for researchers in the field of light scattering.


Book
Rays, Waves, and Scattering : Topics in Classical Mathematical Physics
Author:
ISBN: 140088540X Year: 2017 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This one-of-a-kind book presents many of the mathematical concepts, structures, and techniques used in the study of rays, waves, and scattering. Panoramic in scope, it includes discussions of how ocean waves are refracted around islands and underwater ridges, how seismic waves are refracted in the earth's interior, how atmospheric waves are scattered by mountains and ridges, how the scattering of light waves produces the blue sky, and meteorological phenomena such as rainbows and coronas.Rays, Waves, and Scattering is a valuable resource for practitioners, graduate students, and advanced undergraduates in applied mathematics, theoretical physics, and engineering. Bridging the gap between advanced treatments of the subject written for specialists and less mathematical books aimed at beginners, this unique mathematical compendium features problems and exercises throughout that are geared to various levels of sophistication, covering everything from Ptolemy's theorem to Airy integrals (as well as more technical material), and several informative appendixes.Provides a panoramic look at wave motion in many different contextsFeatures problems and exercises throughoutIncludes numerous appendixes, some on topics not often coveredAn ideal reference book for practitionersCan also serve as a supplemental text in classical applied mathematics, particularly wave theory and mathematical methods in physics and engineeringAccessible to anyone with a strong background in ordinary differential equations, partial differential equations, and functions of a complex variable

Keywords

Mathematical physics. --- Physical mathematics --- Physics --- Mathematics --- Airy approximation. --- Airy functions. --- Airy integral. --- Airy theory. --- Airy wavefront. --- Alexander's dark band. --- Bessel functions. --- Earth. --- Fermat's principle. --- Fresnel integrals. --- Hamilton's principle. --- Hamilton-Jacobi equation. --- Hamilton-Jacobi theory. --- Hamiltonian. --- Hooke's law. --- Kepler's laws of planetary motion. --- Lagrangian. --- Liouville transformation. --- Love waves. --- Navier equations. --- Ptolemy's theorem. --- Rayleigh scattering. --- Schrödinger equation. --- Sir George Biddle Airy. --- Snell's laws. --- Taylor–Goldstein equation. --- WKB(J) approximation. --- Wiechert-Herglotz inverse problem. --- acoustic wave propagation. --- action. --- angle of minimum deviation. --- applied mathematics. --- atmospheric waves. --- billow clouds. --- boundary-value problem. --- buoyancy waves. --- caustics. --- classical mechanics. --- classical wave equation. --- colors. --- complex plane. --- constant phase lines. --- contours. --- corona. --- currents. --- cusp catastrophes. --- deep water waves. --- differential equations. --- diffraction catastrophes. --- diffraction. --- dispersion relations. --- dispersion. --- divergence problem. --- earthquakes. --- eikonal equation. --- elastic solid. --- elastic waves. --- elementary mathematics. --- equations of motion. --- fluid equations. --- fold catastrophes. --- free surface. --- geometric wavefronts. --- geometrical optics. --- glory. --- inhomogeneous medium. --- integrals. --- intensity law. --- internal gravity waves. --- inverse scattering problem. --- islands. --- leading waves. --- lee waves. --- light waves. --- long waves. --- mathematics. --- meteorological optics. --- mountain waves. --- ocean acoustic waveguides. --- ocean acoustics. --- ocean waves. --- one-dimensional waves. --- optics. --- path. --- plane wave incident. --- plane waves. --- polarization. --- potential well. --- rainbow. --- ray equations. --- ray optics. --- ray theory. --- rays. --- reflection. --- refraction. --- ridge. --- scattering. --- seafloor. --- seismic rays. --- seismic tomography. --- seismic waves. --- semicircle theorem. --- shallow water waves. --- ship waves. --- short waves. --- strain. --- stratified fluid. --- stress. --- surface gravity waves. --- surface waves. --- transient waves. --- tsunami propagation. --- tsunamis. --- wave energy. --- wave refraction. --- wave trapping. --- wavefront. --- wavepackets. --- waves. --- wind shear.


Book
Pseudodifferential Operators (PMS-34)
Author:
ISBN: 0691629862 0691615039 Year: 2017 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Here Michael Taylor develops pseudodifferential operators as a tool for treating problems in linear partial differential equations, including existence, uniqueness, and estimates of smoothness, as well as other qualitative properties.Originally published in 1981.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Differential equations, Partial. --- Pseudodifferential operators. --- Airy function. --- Antiholomorphic function. --- Asymptotic expansion. --- Banach space. --- Besov space. --- Bessel function. --- Big O notation. --- Bilinear form. --- Boundary value problem. --- Bounded operator. --- Bounded set (topological vector space). --- Canonical transformation. --- Cauchy problem. --- Cauchy–Kowalevski theorem. --- Cauchy–Riemann equations. --- Change of variables. --- Characteristic variety. --- Compact operator. --- Constant coefficients. --- Continuous linear extension. --- Convex cone. --- Differential operator. --- Dirac delta function. --- Discrete series representation. --- Distribution (mathematics). --- Egorov's theorem. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Eikonal equation. --- Elliptic operator. --- Equation. --- Existence theorem. --- Existential quantification. --- Formal power series. --- Fourier integral operator. --- Fourier inversion theorem. --- Fubini's theorem. --- Fundamental solution. --- Hardy–Littlewood maximal function. --- Harmonic conjugate. --- Heaviside step function. --- Hilbert transform. --- Holomorphic function. --- Homogeneous function. --- Hyperbolic partial differential equation. --- Hypersurface. --- Hypoelliptic operator. --- Hölder condition. --- Inclusion map. --- Infimum and supremum. --- Initial value problem. --- Integral equation. --- Integral transform. --- Integration by parts. --- Interpolation space. --- Lebesgue measure. --- Linear map. --- Lipschitz continuity. --- Lp space. --- Marcinkiewicz interpolation theorem. --- Maximum principle. --- Mean value theorem. --- Modulus of continuity. --- Mollifier. --- Norm (mathematics). --- Open mapping theorem (complex analysis). --- Open set. --- Operator (physics). --- Operator norm. --- Orthonormal basis. --- Parametrix. --- Partial differential equation. --- Partition of unity. --- Polynomial. --- Probability measure. --- Projection (linear algebra). --- Pseudo-differential operator. --- Riemannian manifold. --- Self-adjoint operator. --- Self-adjoint. --- Singular integral. --- Skew-symmetric matrix. --- Smoothness. --- Sobolev space. --- Special case. --- Spectral theorem. --- Spectral theory. --- Support (mathematics). --- Symplectic vector space. --- Taylor's theorem. --- Theorem. --- Trace class. --- Unbounded operator. --- Unitary operator. --- Vanish at infinity. --- Vector bundle. --- Wave front set. --- Weierstrass preparation theorem. --- Wiener's tauberian theorem. --- Zero of a function.


Book
The Global Nonlinear Stability of the Minkowski Space (PMS-41)
Authors: ---
ISBN: 9781400863174 1400863171 0691632553 Year: 2014 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

The aim of this work is to provide a proof of the nonlinear gravitational stability of the Minkowski space-time. More precisely, the book offers a constructive proof of global, smooth solutions to the Einstein Vacuum Equations, which look, in the large, like the Minkowski space-time. In particular, these solutions are free of black holes and singularities. The work contains a detailed description of the sense in which these solutions are close to the Minkowski space-time, in all directions. It thus provides the mathematical framework in which we can give a rigorous derivation of the laws of gravitation proposed by Bondi. Moreover, it establishes other important conclusions concerning the nonlinear character of gravitational radiation. The authors obtain their solutions as dynamic developments of all initial data sets, which are close, in a precise manner, to the flat initial data set corresponding to the Minkowski space-time. They thus establish the global dynamic stability of the latter.Originally published in 1994.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Space and time --- Generalized spaces --- Nonlinear theories --- Physics --- Physical Sciences & Mathematics --- Atomic Physics --- Nonlinear problems --- Nonlinearity (Mathematics) --- Calculus --- Mathematical analysis --- Mathematical physics --- Geometry of paths --- Minkowski space --- Spaces, Generalized --- Weyl space --- Calculus of tensors --- Geometry, Differential --- Geometry, Non-Euclidean --- Hyperspace --- Relativity (Physics) --- Space of more than three dimensions --- Space-time --- Space-time continuum --- Space-times --- Spacetime --- Time and space --- Fourth dimension --- Infinite --- Metaphysics --- Philosophy --- Space sciences --- Time --- Beginning --- Mathematics --- Angular momentum operator. --- Asymptotic analysis. --- Asymptotic expansion. --- Big O notation. --- Boundary value problem. --- Cauchy–Riemann equations. --- Coarea formula. --- Coefficient. --- Compactification (mathematics). --- Comparison theorem. --- Corollary. --- Covariant derivative. --- Curvature tensor. --- Curvature. --- Cut locus (Riemannian manifold). --- Degeneracy (mathematics). --- Degrees of freedom (statistics). --- Derivative. --- Diffeomorphism. --- Differentiable function. --- Eigenvalues and eigenvectors. --- Eikonal equation. --- Einstein field equations. --- Equation. --- Error term. --- Estimation. --- Euclidean space. --- Existence theorem. --- Existential quantification. --- Exponential map (Lie theory). --- Exponential map (Riemannian geometry). --- Exterior (topology). --- Foliation. --- Fréchet derivative. --- Geodesic curvature. --- Geodesic. --- Geodesics in general relativity. --- Geometry. --- Hodge dual. --- Homotopy. --- Hyperbolic partial differential equation. --- Hypersurface. --- Hölder's inequality. --- Identity (mathematics). --- Infinitesimal generator (stochastic processes). --- Integral curve. --- Intersection (set theory). --- Isoperimetric inequality. --- Laplace's equation. --- Lie algebra. --- Lie derivative. --- Linear equation. --- Linear map. --- Logarithm. --- Lorentz group. --- Lp space. --- Mass formula. --- Mean curvature. --- Metric tensor. --- Minkowski space. --- Nonlinear system. --- Normal (geometry). --- Null hypersurface. --- Orthonormal basis. --- Partial derivative. --- Poisson's equation. --- Projection (linear algebra). --- Quantity. --- Radial function. --- Ricci curvature. --- Riemann curvature tensor. --- Riemann surface. --- Riemannian geometry. --- Riemannian manifold. --- Sard's theorem. --- Scalar (physics). --- Scalar curvature. --- Scale invariance. --- Schwarzschild metric. --- Second derivative. --- Second fundamental form. --- Sobolev inequality. --- Sobolev space. --- Stokes formula. --- Stokes' theorem. --- Stress–energy tensor. --- Symmetric tensor. --- Symmetrization. --- Tangent space. --- Tensor product. --- Theorem. --- Trace (linear algebra). --- Transversal (geometry). --- Triangle inequality. --- Uniformization theorem. --- Unit sphere. --- Vector field. --- Volume element. --- Wave equation. --- Weyl tensor.

Listing 1 - 7 of 7
Sort by