Narrow your search

Library

KU Leuven (5)

VUB (5)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

VIVES (3)

KBR (2)

UCLouvain (2)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2008 (1)

2001 (1)

1996 (1)

1989 (1)

1986 (1)

Listing 1 - 5 of 5
Sort by
Surveys on surgery theory.
Authors: --- ---
ISBN: 0691049386 0691088152 1322055211 1400865190 0691049378 1322063281 1400865212 0691088144 9781400865192 9780691049380 9780691049373 9781400865215 9780691088150 9780691088150 9780691088143 Year: 2001 Volume: 145,149 Publisher: Princeton, New Jersey Oxfordshire, England

Loading...
Export citation

Choose an application

Bookmark

Abstract

Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. There have been some extraordinary accomplishments in that time, which have led to enormously varied interactions with algebra, analysis, and geometry. Workers in many of these areas have often lamented the lack of a single source that surveys surgery theory and its applications. Indeed, no one person could write such a survey. The sixtieth birthday of C. T. C. Wall, one of the leaders of the founding generation of surgery theory, provided an opportunity to rectify the situation and produce a comprehensive book on the subject. Experts have written state-of-the-art reports that will be of broad interest to all those interested in topology, not only graduate students and mathematicians, but mathematical physicists as well. Contributors include J. Milnor, S. Novikov, W. Browder, T. Lance, E. Brown, M. Kreck, J. Klein, M. Davis, J. Davis, I. Hambleton, L. Taylor, C. Stark, E. Pedersen, W. Mio, J. Levine, K. Orr, J. Roe, J. Milgram, and C. Thomas.

Keywords

Chirurgie (Topologie) --- Heelkunde (Topologie) --- Surgery (Topology) --- Differential topology --- Homotopy equivalences --- Manifolds (Mathematics) --- Topology --- Algebraic topology (object). --- Algebraic topology. --- Ambient isotopy. --- Assembly map. --- Atiyah–Hirzebruch spectral sequence. --- Atiyah–Singer index theorem. --- Automorphism. --- Banach algebra. --- Borsuk–Ulam theorem. --- C*-algebra. --- CW complex. --- Calculation. --- Category of manifolds. --- Characterization (mathematics). --- Chern class. --- Cobordism. --- Codimension. --- Cohomology. --- Compactification (mathematics). --- Conjecture. --- Contact geometry. --- Degeneracy (mathematics). --- Diagram (category theory). --- Diffeomorphism. --- Differentiable manifold. --- Differential geometry. --- Dirac operator. --- Disk (mathematics). --- Donaldson theory. --- Duality (mathematics). --- Embedding. --- Epimorphism. --- Excision theorem. --- Exponential map (Riemannian geometry). --- Fiber bundle. --- Fibration. --- Fundamental group. --- Group action. --- Group homomorphism. --- H-cobordism. --- Handle decomposition. --- Handlebody. --- Homeomorphism group. --- Homeomorphism. --- Homology (mathematics). --- Homomorphism. --- Homotopy extension property. --- Homotopy fiber. --- Homotopy group. --- Homotopy. --- Hypersurface. --- Intersection form (4-manifold). --- Intersection homology. --- Isomorphism class. --- K3 surface. --- L-theory. --- Limit (category theory). --- Manifold. --- Mapping cone (homological algebra). --- Mapping cylinder. --- Mostow rigidity theorem. --- Orthonormal basis. --- Parallelizable manifold. --- Poincaré conjecture. --- Product metric. --- Projection (linear algebra). --- Pushout (category theory). --- Quaternionic projective space. --- Quotient space (topology). --- Resolution of singularities. --- Ricci curvature. --- Riemann surface. --- Riemannian geometry. --- Riemannian manifold. --- Ring homomorphism. --- Scalar curvature. --- Semisimple algebra. --- Sheaf (mathematics). --- Sign (mathematics). --- Special case. --- Sub"ient. --- Subgroup. --- Submanifold. --- Support (mathematics). --- Surgery exact sequence. --- Surgery obstruction. --- Surgery theory. --- Symplectic geometry. --- Symplectic vector space. --- Theorem. --- Topological conjugacy. --- Topological manifold. --- Topology. --- Transversality (mathematics). --- Transversality theorem. --- Vector bundle. --- Waldhausen category. --- Whitehead torsion. --- Whitney embedding theorem. --- Yamabe invariant.


Book
The hypoelliptic Laplacian and Ray-Singer metrics
Authors: ---
ISBN: 128245837X 9786612458378 1400829062 0691137323 0691137315 9781400829064 9780691137315 9780691137322 6612458372 9781282458376 Year: 2008 Publisher: Princeton Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and Gilles Lebeau establish the basic functional analytic properties of this operator, which is also studied from the perspective of local index theory and analytic torsion. The book shows that the hypoelliptic Laplacian provides a geometric version of the Fokker-Planck equations. The authors give the proper functional analytic setting in order to study this operator and develop a pseudodifferential calculus, which provides estimates on the hypoelliptic Laplacian's resolvent. When the deformation parameter tends to zero, the hypoelliptic Laplacian converges to the standard Hodge Laplacian of the base by a collapsing argument in which the fibers of the cotangent bundle collapse to a point. For the local index theory, small time asymptotics for the supertrace of the associated heat kernel are obtained. The Ray-Singer analytic torsion of the hypoelliptic Laplacian as well as the associated Ray-Singer metrics on the determinant of the cohomology are studied in an equivariant setting, resulting in a key comparison formula between the elliptic and hypoelliptic analytic torsions.

Keywords

Differential equations, Hypoelliptic. --- Laplacian operator. --- Metric spaces. --- Spaces, Metric --- Operator, Laplacian --- Hypoelliptic differential equations --- Generalized spaces --- Set theory --- Topology --- Differential equations, Partial --- Alexander Grothendieck. --- Analytic function. --- Asymptote. --- Asymptotic expansion. --- Berezin integral. --- Bijection. --- Brownian dynamics. --- Brownian motion. --- Chaos theory. --- Chern class. --- Classical Wiener space. --- Clifford algebra. --- Cohomology. --- Combination. --- Commutator. --- Computation. --- Connection form. --- Coordinate system. --- Cotangent bundle. --- Covariance matrix. --- Curvature tensor. --- Curvature. --- De Rham cohomology. --- Derivative. --- Determinant. --- Differentiable manifold. --- Differential operator. --- Dirac operator. --- Direct proof. --- Eigenform. --- Eigenvalues and eigenvectors. --- Ellipse. --- Embedding. --- Equation. --- Estimation. --- Euclidean space. --- Explicit formula. --- Explicit formulae (L-function). --- Feynman–Kac formula. --- Fiber bundle. --- Fokker–Planck equation. --- Formal power series. --- Fourier series. --- Fourier transform. --- Fredholm determinant. --- Function space. --- Girsanov theorem. --- Ground state. --- Heat kernel. --- Hilbert space. --- Hodge theory. --- Holomorphic function. --- Holomorphic vector bundle. --- Hypoelliptic operator. --- Integration by parts. --- Invertible matrix. --- Logarithm. --- Malliavin calculus. --- Martingale (probability theory). --- Matrix calculus. --- Mellin transform. --- Morse theory. --- Notation. --- Parameter. --- Parametrix. --- Parity (mathematics). --- Polynomial. --- Principal bundle. --- Probabilistic method. --- Projection (linear algebra). --- Rectangle. --- Resolvent set. --- Ricci curvature. --- Riemann–Roch theorem. --- Scientific notation. --- Self-adjoint operator. --- Self-adjoint. --- Sign convention. --- Smoothness. --- Sobolev space. --- Spectral theory. --- Square root. --- Stochastic calculus. --- Stochastic process. --- Summation. --- Supertrace. --- Symmetric space. --- Tangent space. --- Taylor series. --- Theorem. --- Theory. --- Torus. --- Trace class. --- Translational symmetry. --- Transversality (mathematics). --- Uniform convergence. --- Variable (mathematics). --- Vector bundle. --- Vector space. --- Wave equation.

The Seiberg-Witten equations and applications to the topology of smooth four-manifolds
Author:
ISBN: 1400865166 9781400865161 9780691025971 0691025975 9780691025971 Year: 1996 Publisher: Princeton, New Jersey

Loading...
Export citation

Choose an application

Bookmark

Abstract

The recent introduction of the Seiberg-Witten invariants of smooth four-manifolds has revolutionized the study of those manifolds. The invariants are gauge-theoretic in nature and are close cousins of the much-studied SU(2)-invariants defined over fifteen years ago by Donaldson. On a practical level, the new invariants have proved to be more powerful and have led to a vast generalization of earlier results. This book is an introduction to the Seiberg-Witten invariants. The work begins with a review of the classical material on Spin c structures and their associated Dirac operators. Next comes a discussion of the Seiberg-Witten equations, which is set in the context of nonlinear elliptic operators on an appropriate infinite dimensional space of configurations. It is demonstrated that the space of solutions to these equations, called the Seiberg-Witten moduli space, is finite dimensional, and its dimension is then computed. In contrast to the SU(2)-case, the Seiberg-Witten moduli spaces are shown to be compact. The Seiberg-Witten invariant is then essentially the homology class in the space of configurations represented by the Seiberg-Witten moduli space. The last chapter gives a flavor for the applications of these new invariants by computing the invariants for most Kahler surfaces and then deriving some basic toological consequences for these surfaces.

Keywords

Four-manifolds (Topology) --- Seiberg-Witten invariants. --- Mathematical physics. --- Physical mathematics --- Physics --- Invariants --- 4-dimensional manifolds (Topology) --- 4-manifolds (Topology) --- Four dimensional manifolds (Topology) --- Manifolds, Four dimensional --- Low-dimensional topology --- Topological manifolds --- Mathematics --- Affine space. --- Affine transformation. --- Algebra bundle. --- Algebraic surface. --- Almost complex manifold. --- Automorphism. --- Banach space. --- Clifford algebra. --- Cohomology. --- Cokernel. --- Complex dimension. --- Complex manifold. --- Complex plane. --- Complex projective space. --- Complex vector bundle. --- Complexification (Lie group). --- Computation. --- Configuration space. --- Conjugate transpose. --- Covariant derivative. --- Curvature form. --- Curvature. --- Differentiable manifold. --- Differential topology. --- Dimension (vector space). --- Dirac equation. --- Dirac operator. --- Division algebra. --- Donaldson theory. --- Duality (mathematics). --- Eigenvalues and eigenvectors. --- Elliptic operator. --- Elliptic surface. --- Equation. --- Fiber bundle. --- Frenet–Serret formulas. --- Gauge fixing. --- Gauge theory. --- Gaussian curvature. --- Geometry. --- Group homomorphism. --- Hilbert space. --- Hodge index theorem. --- Homology (mathematics). --- Homotopy. --- Identity (mathematics). --- Implicit function theorem. --- Intersection form (4-manifold). --- Inverse function theorem. --- Isomorphism class. --- K3 surface. --- Kähler manifold. --- Levi-Civita connection. --- Lie algebra. --- Line bundle. --- Linear map. --- Linear space (geometry). --- Linearization. --- Manifold. --- Mathematical induction. --- Moduli space. --- Multiplication theorem. --- Neighbourhood (mathematics). --- One-form. --- Open set. --- Orientability. --- Orthonormal basis. --- Parameter space. --- Parametric equation. --- Parity (mathematics). --- Partial derivative. --- Principal bundle. --- Projection (linear algebra). --- Pullback (category theory). --- Quadratic form. --- Quaternion algebra. --- Quotient space (topology). --- Riemann surface. --- Riemannian manifold. --- Sard's theorem. --- Sign (mathematics). --- Sobolev space. --- Spin group. --- Spin representation. --- Spin structure. --- Spinor field. --- Subgroup. --- Submanifold. --- Surjective function. --- Symplectic geometry. --- Symplectic manifold. --- Tangent bundle. --- Tangent space. --- Tensor product. --- Theorem. --- Three-dimensional space (mathematics). --- Trace (linear algebra). --- Transversality (mathematics). --- Two-form. --- Zariski tangent space.

Representation theory of semisimple groups : an overview based on examples
Author:
ISBN: 0691090890 9780691090894 0691084017 1400883970 9780691084015 Year: 1986 Volume: 36 Publisher: Princeton (N.J.): Princeton university press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In this classic work, Anthony W. Knapp offers a survey of representation theory of semisimple Lie groups in a way that reflects the spirit of the subject and corresponds to the natural learning process. This book is a model of exposition and an invaluable resource for both graduate students and researchers. Although theorems are always stated precisely, many illustrative examples or classes of examples are given. To support this unique approach, the author includes for the reader a useful 300-item bibliography and an extensive section of notes.

Keywords

Semisimple Lie groups. --- Representations of groups. --- Groupes de Lie semi-simples --- Représentations de groupes --- Semisimple Lie groups --- Representations of groups --- Semi-simple Lie groups --- Lie groups --- Group representation (Mathematics) --- Groups, Representation theory of --- Group theory --- Représentations de groupes --- 512.547 --- 512.547 Linear representations of abstract groups. Group characters --- Linear representations of abstract groups. Group characters --- Abelian group. --- Admissible representation. --- Algebra homomorphism. --- Analytic function. --- Analytic proof. --- Associative algebra. --- Asymptotic expansion. --- Automorphic form. --- Automorphism. --- Bounded operator. --- Bounded set (topological vector space). --- Cartan subalgebra. --- Cartan subgroup. --- Category theory. --- Characterization (mathematics). --- Classification theorem. --- Cohomology. --- Complex conjugate representation. --- Complexification (Lie group). --- Complexification. --- Conjugate transpose. --- Continuous function (set theory). --- Degenerate bilinear form. --- Diagram (category theory). --- Dimension (vector space). --- Dirac operator. --- Discrete series representation. --- Distribution (mathematics). --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Existence theorem. --- Explicit formulae (L-function). --- Fourier inversion theorem. --- General linear group. --- Group homomorphism. --- Haar measure. --- Heine–Borel theorem. --- Hermitian matrix. --- Hilbert space. --- Holomorphic function. --- Hyperbolic function. --- Identity (mathematics). --- Induced representation. --- Infinitesimal character. --- Integration by parts. --- Invariant subspace. --- Invertible matrix. --- Irreducible representation. --- Jacobian matrix and determinant. --- K-finite. --- Levi decomposition. --- Lie algebra. --- Locally integrable function. --- Mathematical induction. --- Matrix coefficient. --- Matrix group. --- Maximal compact subgroup. --- Meromorphic function. --- Metric space. --- Nilpotent Lie algebra. --- Norm (mathematics). --- Parity (mathematics). --- Plancherel theorem. --- Projection (linear algebra). --- Quantifier (logic). --- Reductive group. --- Representation of a Lie group. --- Representation theory. --- Schwartz space. --- Semisimple Lie algebra. --- Set (mathematics). --- Sign (mathematics). --- Solvable Lie algebra. --- Special case. --- Special linear group. --- Special unitary group. --- Subgroup. --- Summation. --- Support (mathematics). --- Symmetric algebra. --- Symmetrization. --- Symplectic group. --- Tensor algebra. --- Tensor product. --- Theorem. --- Topological group. --- Topological space. --- Topological vector space. --- Unitary group. --- Unitary matrix. --- Unitary representation. --- Universal enveloping algebra. --- Variable (mathematics). --- Vector bundle. --- Weight (representation theory). --- Weyl character formula. --- Weyl group. --- Weyl's theorem. --- ZPP (complexity). --- Zorn's lemma.

Spin geometry.
Authors: ---
ISBN: 0691085420 1400883911 9781400883912 9780691085425 Year: 1989 Volume: 38 Publisher: Princeton (N.J.) : Princeton university press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book offers a systematic and comprehensive presentation of the concepts of a spin manifold, spinor fields, Dirac operators, and A-genera, which, over the last two decades, have come to play a significant role in many areas of modern mathematics. Since the deeper applications of these ideas require various general forms of the Atiyah-Singer Index Theorem, the theorems and their proofs, together with all prerequisite material, are examined here in detail. The exposition is richly embroidered with examples and applications to a wide spectrum of problems in differential geometry, topology, and mathematical physics. The authors consistently use Clifford algebras and their representations in this exposition. Clifford multiplication and Dirac operator identities are even used in place of the standard tensor calculus. This unique approach unifies all the standard elliptic operators in geometry and brings fresh insights into curvature calculations. The fundamental relationships of Clifford modules to such topics as the theory of Lie groups, K-theory, KR-theory, and Bott Periodicity also receive careful consideration. A special feature of this book is the development of the theory of Cl-linear elliptic operators and the associated index theorem, which connects certain subtle spin-corbordism invariants to classical questions in geometry and has led to some of the most profound relations known between the curvature and topology of manifolds.

Keywords

Algebres de Clifford --- Clifford [Algebra's van ] --- Clifford algebras --- Fysica [Mathematische ] --- Fysica [Wiskundige ] --- Mathematische fysica --- Physics -- Mathematics --- Physics [Mathematical ] --- Physique -- Mathématiques --- Physique -- Méthodes mathématiques --- Wiskundige fysica --- Clifford, Algèbres de --- Spin, Nuclear --- Geometric algebras --- Clifford algebras. --- Spin geometry. --- Clifford, Algèbres de --- Spin geometry --- 514.76 --- Algebras, Linear --- 514.76 Geometry of differentiable manifolds and of their submanifolds --- Geometry of differentiable manifolds and of their submanifolds --- Global differential geometry --- Geometry --- Mathematical physics --- Topology --- Nuclear spin --- -Mathematics --- Géométrie --- Physique mathématique --- Spin nucléaire --- Topologie --- Mathematics --- Mathématiques --- Algebraic theory. --- Atiyah–Singer index theorem. --- Automorphism. --- Betti number. --- Binary icosahedral group. --- Binary octahedral group. --- Bundle metric. --- C*-algebra. --- Calabi conjecture. --- Calabi–Yau manifold. --- Cartesian product. --- Classification theorem. --- Clifford algebra. --- Cobordism. --- Cohomology ring. --- Cohomology. --- Cokernel. --- Complete metric space. --- Complex manifold. --- Complex vector bundle. --- Complexification (Lie group). --- Covering space. --- Diffeomorphism. --- Differential topology. --- Dimension (vector space). --- Dimension. --- Dirac operator. --- Disk (mathematics). --- Dolbeault cohomology. --- Einstein field equations. --- Elliptic operator. --- Equivariant K-theory. --- Exterior algebra. --- Fiber bundle. --- Fixed-point theorem. --- Fourier inversion theorem. --- Fundamental group. --- Gauge theory. --- Geometry. --- Hilbert scheme. --- Holonomy. --- Homotopy sphere. --- Homotopy. --- Hyperbolic manifold. --- Induced homomorphism. --- Intersection form (4-manifold). --- Isomorphism class. --- J-invariant. --- K-theory. --- Kähler manifold. --- Laplace operator. --- Lie algebra. --- Lorentz covariance. --- Lorentz group. --- Manifold. --- Mathematical induction. --- Metric connection. --- Minkowski space. --- Module (mathematics). --- N-sphere. --- Operator (physics). --- Orthonormal basis. --- Principal bundle. --- Projective space. --- Pseudo-Riemannian manifold. --- Pseudo-differential operator. --- Quadratic form. --- Quaternion. --- Quaternionic projective space. --- Ricci curvature. --- Riemann curvature tensor. --- Riemannian geometry. --- Riemannian manifold. --- Ring homomorphism. --- Scalar curvature. --- Scalar multiplication. --- Sign (mathematics). --- Space form. --- Sphere theorem. --- Spin representation. --- Spin structure. --- Spinor bundle. --- Spinor field. --- Spinor. --- Subgroup. --- Support (mathematics). --- Symplectic geometry. --- Tangent bundle. --- Tangent space. --- Tensor calculus. --- Tensor product. --- Theorem. --- Topology. --- Unit disk. --- Unit sphere. --- Variable (mathematics). --- Vector bundle. --- Vector field. --- Vector space. --- Volume form. --- Nuclear spin - - Mathematics --- -Clifford algebras. --- -Geometry

Listing 1 - 5 of 5
Sort by