Listing 1 - 10 of 17 | << page >> |
Sort by
|
Choose an application
Beginning with a brief introduction to algorithms and diophantine equations, this volume aims to provide a coherent account of the methods used to find all the solutions to certain diophantine equations, particularly those procedures which have been developed for use on a computer. The study is divided into three parts, the emphasis throughout being on examining approaches with a wide range of applications. The first section considers basic techniques including local methods, sieving, descent arguments and the LLL algorithm. The second section explores problems which can be solved using Baker's theory of linear forms in logarithms. The final section looks at problems associated with curves, mainly focusing on rational and integral points on elliptic curves. Each chapter concludes with a useful set of exercises. A detailed bibliography is included. This book will appeal to graduate students and research workers, with a basic knowledge of number theory, who are interested in solving diophantine equations using computational methods.
Diophantine equations. --- Diophantic equations --- Equations, Diophantic --- Equations, Diophantine --- Equations, Indefinite --- Equations, Indeterminate --- Indefinite equations --- Indeterminate equations --- Diophantine analysis
Choose an application
Discriminant equations are an important class of Diophantine equations with close ties to algebraic number theory, Diophantine approximation and Diophantine geometry. This book is the first comprehensive account of discriminant equations and their applications. It brings together many aspects, including effective results over number fields, effective results over finitely generated domains, estimates on the number of solutions, applications to algebraic integers of given discriminant, power integral bases, canonical number systems, root separation of polynomials and reduction of hyperelliptic curves. The authors' previous title, Unit Equations in Diophantine Number Theory, laid the groundwork by presenting important results that are used as tools in the present book. This material is briefly summarized in the introductory chapters along with the necessary basic algebra and algebraic number theory, making the book accessible to experts and young researchers alike.
Diophantine equations. --- Diophantic equations --- Equations, Diophantic --- Equations, Diophantine --- Equations, Indefinite --- Equations, Indeterminate --- Indefinite equations --- Indeterminate equations --- Diophantine analysis
Choose an application
This self-contained book will benefit beginners as well as researchers. It is devoted to Diophantine approximation, the analytic theory of Dirichlet series, and some connections between these two domains, which often occur through the Kronecker approximation theorem. Accordingly, the book is divided into seven chapters, the first three of which present tools from commutative harmonic analysis, including a sharp form of the uncertainty principle, ergodic theory and Diophantine approximation to be used in the sequel. A presentation of continued fraction expansions, including the mixing property of the Gauss map, is given. Chapters four and five present the general theory of Dirichlet series, with classes of examples connected to continued fractions, the famous Bohr point of view, and then the use of random Dirichlet series to produce non-trivial extremal examples, including sharp forms of the Bohnenblust-Hille theorem. Chapter six deals with Hardy-Dirichlet spaces, which are new and useful Banach spaces of analytic functions in a half-plane. Finally, chapter seven presents the Bagchi-Voronin universality theorems, for the zeta function, and r-tuples of L functions. The proofs, which mix hilbertian geometry, complex and harmonic analysis, and ergodic theory, are a very good illustration of the material studied earlier.
Mathematics. --- Mathematics, general. --- Diophantine equations --- Numerical solutions. --- Diophantic equations --- Equations, Diophantic --- Equations, Diophantine --- Equations, Indefinite --- Equations, Indeterminate --- Indefinite equations --- Indeterminate equations --- Diophantine analysis --- Math --- Science
Choose an application
Diophantine equations --- Diophantine equations. --- 511.5 --- 511.5 Diophantine equations --- Diophantic equations --- Equations, Diophantic --- Equations, Diophantine --- Equations, Indefinite --- Equations, Indeterminate --- Indefinite equations --- Indeterminate equations --- Diophantine analysis
Choose an application
Harold Davenport was one of the truly great mathematicians of the twentieth century. Based on lectures he gave at the University of Michigan in the early 1960s, this book is concerned with the use of analytic methods in the study of integer solutions to Diophantine equations and Diophantine inequalities. It provides an excellent introduction to a timeless area of number theory that is still as widely researched today as it was when the book originally appeared. The three main themes of the book are Waring's problem and the representation of integers by diagonal forms, the solubility in integers of systems of forms in many variables, and the solubility in integers of diagonal inequalities. For the second edition of the book a comprehensive foreword has been added in which three prominent authorities describe the modern context and recent developments. A thorough bibliography has also been added.
Diophantine analysis. --- Diophantine equations. --- Diophantic equations --- Equations, Diophantic --- Equations, Diophantine --- Equations, Indefinite --- Equations, Indeterminate --- Indefinite equations --- Indeterminate equations --- Diophantine analysis --- Indeterminate analysis --- Number theory --- Forms, Quadratic
Choose an application
Algebraic geometry --- Diophantine equations --- Diophantische vergelijkingen --- Equations diophantiennes --- Diophantine equations. --- 51 --- Diophantic equations --- Equations, Diophantic --- Equations, Diophantine --- Equations, Indefinite --- Equations, Indeterminate --- Indefinite equations --- Indeterminate equations --- Diophantine analysis --- Mathematics --- 51 Mathematics
Choose an application
511.5 --- Diophantine equations --- 511.5 Diophantine equations --- Diophantine analysis --- Diophantic equations --- Equations, Diophantic --- Equations, Diophantine --- Equations, Indefinite --- Equations, Indeterminate --- Indefinite equations --- Indeterminate equations --- Indeterminate analysis --- Number theory --- Forms, Quadratic
Choose an application
This unique book focuses on critical point theory for strongly indefinite functionals in order to deal with nonlinear variational problems in areas such as physics, mechanics and economics. With the original ingredients of Lipschitz partitions of unity of gage spaces (nonmetrizable spaces), Lipschitz normality, and sufficient conditions for the normality, as well as existence-uniqueness of flow of ODE on gage spaces, the book presents for the first time a deformation theory in locally convex topological vector spaces. It also offers satisfying variational settings for homoclinic-type solutions
Calculus of variations. --- Diophantine equations. --- Diophantic equations --- Equations, Diophantic --- Equations, Diophantine --- Equations, Indefinite --- Equations, Indeterminate --- Indefinite equations --- Indeterminate equations --- Diophantine analysis --- Isoperimetrical problems --- Variations, Calculus of --- Maxima and minima
Choose an application
Diophantine equations over number fields have formed one of the most important and fruitful areas of mathematics throughout civilisation. In recent years increasing interest has been aroused in the analogous area of equations over function fields. However, although considerable progress has been made by previous authors, none has attempted the central problem of providing methods for the actual solution of such equations. The latter is the purpose and achievement of this volume: algorithms are provided for the complete resolution of various families of equations, such as those of Thue, hyperelliptic and genus one type. The results are achieved by means of an original fundamental inequality, first announced by the author in 1982. Several specific examples are included as illustrations of the general method and as a testimony to its efficiency. Furthermore, bounds are obtained on the solutions which improve on those obtained previously by other means. Extending the equality to a different setting, namely that of positive characteristic, enables the various families of equations to be resolved in that circumstance. Finally, by applying the inequality in a different manner, simple bounds are determined on their solutions in rational functions of the general superelliptic equation. This book represents a self-contained account of a new approach to the subject, and one which plainly has not reached the full extent of its application. It also provides a more direct on the problems than any previous book. Little expert knowledge is required to follow the theory presented, and it will appeal to professional mathematicians, research students and the enthusiastic undergraduate.
Diophantine equations. --- Algebraic fields. --- Algebraic number fields --- Algebraic numbers --- Fields, Algebraic --- Algebra, Abstract --- Algebraic number theory --- Rings (Algebra) --- Diophantic equations --- Equations, Diophantic --- Equations, Diophantine --- Equations, Indefinite --- Equations, Indeterminate --- Indefinite equations --- Indeterminate equations --- Diophantine analysis
Choose an application
Number theory --- Algebraic number theory --- Algebraïsche getallentheorie --- Analyse diophantienne --- Approximatie [Diophantische ] --- Approximation [Diophantienne ] --- Approximation [Diophantine ] --- Diophantine analysis --- Diophantine approximation --- Diophantische analyse --- Nombres algébriques [Théorie des ] --- Diophantine approximation. --- Diophantine equations. --- 51 --- Diophantine equations --- Diophantic equations --- Equations, Diophantic --- Equations, Diophantine --- Equations, Indefinite --- Equations, Indeterminate --- Indefinite equations --- Indeterminate equations --- Approximation, Diophantine --- Approximation theory --- Mathematics --- 51 Mathematics
Listing 1 - 10 of 17 | << page >> |
Sort by
|