Narrow your search
Listing 1 - 10 of 12 << page
of 2
>>
Sort by

Book
A generalization of Bohr-Mollerup's theorem for higher order convex functions
Authors: ---
ISBN: 3030950883 3030950875 Year: 2022 Publisher: Cham Springer Nature

Loading...
Export citation

Choose an application

Bookmark

Abstract

In 1922, Harald Bohr and Johannes Mollerup established a remarkable characterization of the Euler gamma function using its log-convexity property. A decade later, Emil Artin investigated this result and used it to derive the basic properties of the gamma function using elementary methods of the calculus. Bohr-Mollerup's theorem was then adopted by Nicolas Bourbaki as the starting point for his exposition of the gamma function. This open access book develops a far-reaching generalization of Bohr-Mollerup's theorem to higher order convex functions, along lines initiated by Wolfgang Krull, Roger Webster, and some others but going considerably further than past work. In particular, this generalization shows using elementary techniques that a very rich spectrum of functions satisfy analogues of several classical properties of the gamma function, including Bohr-Mollerup's theorem itself, Euler's reflection formula, Gauss' multiplication theorem, Stirling's formula, and Weierstrass' canonical factorization. The scope of the theory developed in this work is illustrated through various examples, ranging from the gamma function itself and its variants and generalizations (q-gamma, polygamma, multiple gamma functions) to important special functions such as the Hurwitz zeta function and the generalized Stieltjes constants. This volume is also an opportunity to honor the 100th anniversary of Bohr-Mollerup's theorem and to spark the interest of a large number of researchers in this beautiful theory.


Book
Symmetry in Modeling and Analysis of Dynamic Systems
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Real-world systems exhibit complex behavior, therefore novel mathematical approaches or modifications of classical ones have to be employed to precisely predict, monitor, and control complicated chaotic and stochastic processes. One of the most basic concepts that has to be taken into account while conducting research in all natural sciences is symmetry, and it is usually used to refer to an object that is invariant under some transformations including translation, reflection, rotation or scaling.The following Special Issue is dedicated to investigations of the concept of dynamical symmetry in the modelling and analysis of dynamic features occurring in various branches of science like physics, chemistry, biology, and engineering, with special emphasis on research based on the mathematical models of nonlinear partial and ordinary differential equations. Addressed topics cover theories developed and employed under the concept of invariance of the global/local behavior of the points of spacetime, including temporal/spatiotemporal symmetries.


Book
Symmetry in Modeling and Analysis of Dynamic Systems
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Real-world systems exhibit complex behavior, therefore novel mathematical approaches or modifications of classical ones have to be employed to precisely predict, monitor, and control complicated chaotic and stochastic processes. One of the most basic concepts that has to be taken into account while conducting research in all natural sciences is symmetry, and it is usually used to refer to an object that is invariant under some transformations including translation, reflection, rotation or scaling.The following Special Issue is dedicated to investigations of the concept of dynamical symmetry in the modelling and analysis of dynamic features occurring in various branches of science like physics, chemistry, biology, and engineering, with special emphasis on research based on the mathematical models of nonlinear partial and ordinary differential equations. Addressed topics cover theories developed and employed under the concept of invariance of the global/local behavior of the points of spacetime, including temporal/spatiotemporal symmetries.


Book
Symmetry in Modeling and Analysis of Dynamic Systems
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Real-world systems exhibit complex behavior, therefore novel mathematical approaches or modifications of classical ones have to be employed to precisely predict, monitor, and control complicated chaotic and stochastic processes. One of the most basic concepts that has to be taken into account while conducting research in all natural sciences is symmetry, and it is usually used to refer to an object that is invariant under some transformations including translation, reflection, rotation or scaling.The following Special Issue is dedicated to investigations of the concept of dynamical symmetry in the modelling and analysis of dynamic features occurring in various branches of science like physics, chemistry, biology, and engineering, with special emphasis on research based on the mathematical models of nonlinear partial and ordinary differential equations. Addressed topics cover theories developed and employed under the concept of invariance of the global/local behavior of the points of spacetime, including temporal/spatiotemporal symmetries.

Keywords

Research & information: general --- Mathematics & science --- time delay --- third order differential equations --- difference scheme --- stability --- ϕc-Laplacian --- boundary value problem --- critical point theory --- three solutions --- multiple solutions --- fixed point theory --- boundary value problems --- generalized attracting horseshoe --- strange attractors --- poincaré map --- electronic circuits --- non-canonical differential equations --- second-order --- neutral delay --- mixed type --- oscillation criteria --- cell transplantation --- cytokines --- ischemic stroke --- numerical simulation --- runge-kutta method --- stability analysis --- ambient assisted living --- AAL --- ambient intelligence --- assisted living --- user-interfaces --- fuzzy logic --- vibrations --- symmetrical structures --- eigenmodes --- building --- concrete --- partial difference equation --- infinitely many small solutions --- (p,q)-Laplacian --- time delay --- third order differential equations --- difference scheme --- stability --- ϕc-Laplacian --- boundary value problem --- critical point theory --- three solutions --- multiple solutions --- fixed point theory --- boundary value problems --- generalized attracting horseshoe --- strange attractors --- poincaré map --- electronic circuits --- non-canonical differential equations --- second-order --- neutral delay --- mixed type --- oscillation criteria --- cell transplantation --- cytokines --- ischemic stroke --- numerical simulation --- runge-kutta method --- stability analysis --- ambient assisted living --- AAL --- ambient intelligence --- assisted living --- user-interfaces --- fuzzy logic --- vibrations --- symmetrical structures --- eigenmodes --- building --- concrete --- partial difference equation --- infinitely many small solutions --- (p,q)-Laplacian


Book
Fractional Differential Equations: Theory, Methods and Applications
Authors: ---
ISBN: 303921733X 3039217321 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fractional calculus provides the possibility of introducing integrals and derivatives of an arbitrary order in the mathematical modelling of physical processes, and it has become a relevant subject with applications to various fields, such as anomalous diffusion, propagation in different media, and propogation in relation to materials with different properties. However, many aspects from theoretical and practical points of view have still to be developed in relation to models based on fractional operators. This Special Issue is related to new developments on different aspects of fractional differential equations, both from a theoretical point of view and in terms of applications in different fields such as physics, chemistry, or control theory, for instance. The topics of the Issue include fractional calculus, the mathematical analysis of the properties of the solutions to fractional equations, the extension of classical approaches, or applications of fractional equations to several fields.


Book
New Trends in Differential and Difference Equations and Applications
Authors: ---
ISBN: 3039215396 3039215388 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue aims to be a compilation of new results in the areas of differential and difference Equations, covering boundary value problems, systems of differential and difference equations, as well as analytical and numerical methods. The objective is to provide an overview of techniques used in these different areas and to emphasize their applicability to real-life phenomena, by the inclusion of examples. These examples not only clarify the theoretical results presented, but also provide insight on how to apply, for future works, the techniques used.

Keywords

heteroclinic solutions --- non-instantaneous impulses --- Schauder’s fixed point theory --- dichotomy --- second-order differential/difference/q-difference equation of hypergeometric type --- differential equations --- a priori estimates --- global solutions --- generalized Liouville equation --- Hilbert space --- dissipation --- collocation method --- exponential dichotomy --- Sumudu decomposition method --- three-step Taylor method --- dynamical system --- lower and upper solutions --- problems in the real line --- Nagumo condition on the real line --- SIRS epidemic model --- first order periodic systems --- regular solutions --- Clairin’s method --- coupled nonlinear systems --- Navier–Stokes equations --- Bäcklund transformation --- asymptotic stability --- Caputo fractional derivative --- exponential stability --- difference equations --- lipschitz stability --- strong nonlinearities --- polynomial solution --- integro-differentials --- kinetic energy --- Legendre wavelets --- weak solutions --- discrete Lyapunov equation --- population dynamics --- non-uniform lattices --- Korteweg-de Vries equation --- time-dependent partial differential equations --- mean curvature operator --- functional boundary conditions --- mathematical modelling --- fixed point theory --- limit-periodic solutions --- Arzèla Ascoli theorem --- Miura transformation --- state dependent delays --- ?-Laplacian operator --- divided-difference equations --- effective existence criteria


Book
Fourier Analysis on Local Fields. (MN-15)
Author:
ISBN: 0691618127 0691645167 1400871336 9781400871339 0691081654 9780691081656 Year: 2015 Volume: 15 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents a development of the basic facts about harmonic analysis on local fields and the n-dimensional vector spaces over these fields. It focuses almost exclusively on the analogy between the local field and Euclidean cases, with respect to the form of statements, the manner of proof, and the variety of applications.The force of the analogy between the local field and Euclidean cases rests in the relationship of the field structures that underlie the respective cases. A complete classification of locally compact, non-discrete fields gives us two examples of connected fields (real and complex numbers); the rest are local fields (p-adic numbers, p-series fields, and their algebraic extensions). The local fields are studied in an effort to extend knowledge of the reals and complexes as locally compact fields.The author's central aim has been to present the basic facts of Fourier analysis on local fields in an accessible form and in the same spirit as in Zygmund's Trigonometric Series (Cambridge, 1968) and in Introduction to Fourier Analysis on Euclidean Spaces by Stein and Weiss (1971).Originally published in 1975.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Fourier analysis. --- Local fields (Algebra) --- Fields, Local (Algebra) --- Algebraic fields --- Analysis, Fourier --- Mathematical analysis --- Corps algébriques --- Fourier analysis --- 511 --- 511 Number theory --- Number theory --- Local fields (Algebra). --- Harmonic analysis. Fourier analysis --- Fourier Analysis --- Abelian group. --- Absolute continuity. --- Absolute value. --- Addition. --- Additive group. --- Algebraic extension. --- Algebraic number field. --- Bessel function. --- Beta function. --- Borel measure. --- Bounded function. --- Bounded variation. --- Boundedness. --- Calculation. --- Cauchy–Riemann equations. --- Characteristic function (probability theory). --- Complex analysis. --- Conformal map. --- Continuous function. --- Convolution. --- Coprime integers. --- Corollary. --- Coset. --- Determinant. --- Dimension (vector space). --- Dimension. --- Dirichlet kernel. --- Discrete space. --- Distribution (mathematics). --- Endomorphism. --- Field of fractions. --- Finite field. --- Formal power series. --- Fourier series. --- Fourier transform. --- Gamma function. --- Gelfand. --- Haar measure. --- Haar wavelet. --- Half-space (geometry). --- Hankel transform. --- Hardy's inequality. --- Harmonic analysis. --- Harmonic function. --- Homogeneous distribution. --- Integer. --- Lebesgue integration. --- Linear combination. --- Linear difference equation. --- Linear map. --- Linear space (geometry). --- Local field. --- Lp space. --- Maximal ideal. --- Measurable function. --- Measure (mathematics). --- Mellin transform. --- Metric space. --- Modular form. --- Multiplicative group. --- Norbert Wiener. --- P-adic number. --- Poisson kernel. --- Power series. --- Prime ideal. --- Probability. --- Product metric. --- Rational number. --- Regularization (mathematics). --- Requirement. --- Ring (mathematics). --- Ring of integers. --- Scalar multiplication. --- Scientific notation. --- Sign (mathematics). --- Smoothness. --- Special case. --- Special functions. --- Subgroup. --- Subring. --- Support (mathematics). --- Theorem. --- Topological space. --- Unitary operator. --- Vector space. --- Analyse harmonique (mathématiques)


Book
Mathematical Methods, Modelling and Applications
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume deals with novel high-quality research results of a wide class of mathematical models with applications in engineering, nature, and social sciences. Analytical and numeric, deterministic and uncertain dimensions are treated. Complex and multidisciplinary models are treated, including novel techniques of obtaining observation data and pattern recognition. Among the examples of treated problems, we encounter problems in engineering, social sciences, physics, biology, and health sciences. The novelty arises with respect to the mathematical treatment of the problem. Mathematical models are built, some of them under a deterministic approach, and other ones taking into account the uncertainty of the data, deriving random models. Several resulting mathematical representations of the models are shown as equations and systems of equations of different types: difference equations, ordinary differential equations, partial differential equations, integral equations, and algebraic equations. Across the chapters of the book, a wide class of approaches can be found to solve the displayed mathematical models, from analytical to numeric techniques, such as finite difference schemes, finite volume methods, iteration schemes, and numerical integration methods.

Keywords

Research & information: general --- Mathematics & science --- mathematical modeling --- infiltration well --- differential equations --- porous medium --- fractal conductivity model --- incomplete rankings --- Kendall's tau --- permutation graph --- competitive balance --- Spotify --- collocation --- volterra integral equation --- highly oscillatory --- convergence --- areal porosity --- volumetric porosity --- fractal area-volume relationship --- tortuosity factor --- joint probability --- corrugated box printing machine --- modified Delphi method --- analytic network process (ANP) --- supplier --- nonlinear system --- iterative method --- divided difference operator --- stability --- parameter plane --- dynamical plane --- random hyperbolic model --- random laplace transform --- numerical integration --- monte carlo method --- numerical simulation --- talbot algorithm --- stochastic perturbations --- random nonlinear oscillator --- maximum entropy principle --- probability density function --- stationary Gaussian noise --- random mean square parabolic model --- finite degree of randomness --- random finite difference scheme --- relativistic harmonic oscillator --- kinematics of a particle --- special relativity --- nonlinear problems in mechanics --- equations of motion in gravitational theory --- virus propagation --- stochastic modeling --- Gillespie algorithm --- conservative formulation --- multidimensional fragmentation equation --- weight functions --- finite volume scheme --- contamination plume --- advection-diffusion --- universal curves --- Dirichlet-to-Neumann map --- Schrödinger operator --- contagion effect --- difference equation --- elections --- labor condition --- mathematical compartmental discrete model --- political corruption --- revolving doors --- sensitivity analysis --- simulation --- numerical methods --- integro-interpolation method --- splitting method --- convergence of models --- standard deviation of the error --- diabetic retinopathy --- ocular fundus --- laser coagulation --- optical coherence tomography --- image processing --- segmentation --- safe treatment --- Hermite interpolation --- nodal systems --- unit circle --- circular membrane --- fluid-structure interaction --- differential-integral equations --- power series method --- closed-form solution --- time series model --- wavelet transform --- ARIMA model --- neural network NARX --- ionospheric parameters --- courtyard --- climate change --- microclimate --- Support Vector Regression (SVR) --- machine learning --- matrix functions --- matrix hyperbolic tangent --- matrix exponential --- Taylor series --- matrix polynomial evaluation --- mathematical modeling --- infiltration well --- differential equations --- porous medium --- fractal conductivity model --- incomplete rankings --- Kendall's tau --- permutation graph --- competitive balance --- Spotify --- collocation --- volterra integral equation --- highly oscillatory --- convergence --- areal porosity --- volumetric porosity --- fractal area-volume relationship --- tortuosity factor --- joint probability --- corrugated box printing machine --- modified Delphi method --- analytic network process (ANP) --- supplier --- nonlinear system --- iterative method --- divided difference operator --- stability --- parameter plane --- dynamical plane --- random hyperbolic model --- random laplace transform --- numerical integration --- monte carlo method --- numerical simulation --- talbot algorithm --- stochastic perturbations --- random nonlinear oscillator --- maximum entropy principle --- probability density function --- stationary Gaussian noise --- random mean square parabolic model --- finite degree of randomness --- random finite difference scheme --- relativistic harmonic oscillator --- kinematics of a particle --- special relativity --- nonlinear problems in mechanics --- equations of motion in gravitational theory --- virus propagation --- stochastic modeling --- Gillespie algorithm --- conservative formulation --- multidimensional fragmentation equation --- weight functions --- finite volume scheme --- contamination plume --- advection-diffusion --- universal curves --- Dirichlet-to-Neumann map --- Schrödinger operator --- contagion effect --- difference equation --- elections --- labor condition --- mathematical compartmental discrete model --- political corruption --- revolving doors --- sensitivity analysis --- simulation --- numerical methods --- integro-interpolation method --- splitting method --- convergence of models --- standard deviation of the error --- diabetic retinopathy --- ocular fundus --- laser coagulation --- optical coherence tomography --- image processing --- segmentation --- safe treatment --- Hermite interpolation --- nodal systems --- unit circle --- circular membrane --- fluid-structure interaction --- differential-integral equations --- power series method --- closed-form solution --- time series model --- wavelet transform --- ARIMA model --- neural network NARX --- ionospheric parameters --- courtyard --- climate change --- microclimate --- Support Vector Regression (SVR) --- machine learning --- matrix functions --- matrix hyperbolic tangent --- matrix exponential --- Taylor series --- matrix polynomial evaluation


Book
Mathematical Methods, Modelling and Applications
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume deals with novel high-quality research results of a wide class of mathematical models with applications in engineering, nature, and social sciences. Analytical and numeric, deterministic and uncertain dimensions are treated. Complex and multidisciplinary models are treated, including novel techniques of obtaining observation data and pattern recognition. Among the examples of treated problems, we encounter problems in engineering, social sciences, physics, biology, and health sciences. The novelty arises with respect to the mathematical treatment of the problem. Mathematical models are built, some of them under a deterministic approach, and other ones taking into account the uncertainty of the data, deriving random models. Several resulting mathematical representations of the models are shown as equations and systems of equations of different types: difference equations, ordinary differential equations, partial differential equations, integral equations, and algebraic equations. Across the chapters of the book, a wide class of approaches can be found to solve the displayed mathematical models, from analytical to numeric techniques, such as finite difference schemes, finite volume methods, iteration schemes, and numerical integration methods.

Keywords

Research & information: general --- Mathematics & science --- mathematical modeling --- infiltration well --- differential equations --- porous medium --- fractal conductivity model --- incomplete rankings --- Kendall’s tau --- permutation graph --- competitive balance --- Spotify --- collocation --- volterra integral equation --- highly oscillatory --- convergence --- areal porosity --- volumetric porosity --- fractal area-volume relationship --- tortuosity factor --- joint probability --- corrugated box printing machine --- modified Delphi method --- analytic network process (ANP) --- supplier --- nonlinear system --- iterative method --- divided difference operator --- stability --- parameter plane --- dynamical plane --- random hyperbolic model --- random laplace transform --- numerical integration --- monte carlo method --- numerical simulation --- talbot algorithm --- stochastic perturbations --- random nonlinear oscillator --- maximum entropy principle --- probability density function --- stationary Gaussian noise --- random mean square parabolic model --- finite degree of randomness --- random finite difference scheme --- relativistic harmonic oscillator --- kinematics of a particle --- special relativity --- nonlinear problems in mechanics --- equations of motion in gravitational theory --- virus propagation --- stochastic modeling --- Gillespie algorithm --- conservative formulation --- multidimensional fragmentation equation --- weight functions --- finite volume scheme --- contamination plume --- advection-diffusion --- universal curves --- Dirichlet-to-Neumann map --- Schrödinger operator --- contagion effect --- difference equation --- elections --- labor condition --- mathematical compartmental discrete model --- political corruption --- revolving doors --- sensitivity analysis --- simulation --- numerical methods --- integro-interpolation method --- splitting method --- convergence of models --- standard deviation of the error --- diabetic retinopathy --- ocular fundus --- laser coagulation --- optical coherence tomography --- image processing --- segmentation --- safe treatment --- Hermite interpolation --- nodal systems --- unit circle --- circular membrane --- fluid-structure interaction --- differential-integral equations --- power series method --- closed-form solution --- time series model --- wavelet transform --- ARIMA model --- neural network NARX --- ionospheric parameters --- courtyard --- climate change --- microclimate --- Support Vector Regression (SVR) --- machine learning --- matrix functions --- matrix hyperbolic tangent --- matrix exponential --- Taylor series --- matrix polynomial evaluation --- n/a --- Kendall's tau --- Schrödinger operator


Book
Mathematical Methods, Modelling and Applications
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume deals with novel high-quality research results of a wide class of mathematical models with applications in engineering, nature, and social sciences. Analytical and numeric, deterministic and uncertain dimensions are treated. Complex and multidisciplinary models are treated, including novel techniques of obtaining observation data and pattern recognition. Among the examples of treated problems, we encounter problems in engineering, social sciences, physics, biology, and health sciences. The novelty arises with respect to the mathematical treatment of the problem. Mathematical models are built, some of them under a deterministic approach, and other ones taking into account the uncertainty of the data, deriving random models. Several resulting mathematical representations of the models are shown as equations and systems of equations of different types: difference equations, ordinary differential equations, partial differential equations, integral equations, and algebraic equations. Across the chapters of the book, a wide class of approaches can be found to solve the displayed mathematical models, from analytical to numeric techniques, such as finite difference schemes, finite volume methods, iteration schemes, and numerical integration methods.

Keywords

mathematical modeling --- infiltration well --- differential equations --- porous medium --- fractal conductivity model --- incomplete rankings --- Kendall’s tau --- permutation graph --- competitive balance --- Spotify --- collocation --- volterra integral equation --- highly oscillatory --- convergence --- areal porosity --- volumetric porosity --- fractal area-volume relationship --- tortuosity factor --- joint probability --- corrugated box printing machine --- modified Delphi method --- analytic network process (ANP) --- supplier --- nonlinear system --- iterative method --- divided difference operator --- stability --- parameter plane --- dynamical plane --- random hyperbolic model --- random laplace transform --- numerical integration --- monte carlo method --- numerical simulation --- talbot algorithm --- stochastic perturbations --- random nonlinear oscillator --- maximum entropy principle --- probability density function --- stationary Gaussian noise --- random mean square parabolic model --- finite degree of randomness --- random finite difference scheme --- relativistic harmonic oscillator --- kinematics of a particle --- special relativity --- nonlinear problems in mechanics --- equations of motion in gravitational theory --- virus propagation --- stochastic modeling --- Gillespie algorithm --- conservative formulation --- multidimensional fragmentation equation --- weight functions --- finite volume scheme --- contamination plume --- advection-diffusion --- universal curves --- Dirichlet-to-Neumann map --- Schrödinger operator --- contagion effect --- difference equation --- elections --- labor condition --- mathematical compartmental discrete model --- political corruption --- revolving doors --- sensitivity analysis --- simulation --- numerical methods --- integro-interpolation method --- splitting method --- convergence of models --- standard deviation of the error --- diabetic retinopathy --- ocular fundus --- laser coagulation --- optical coherence tomography --- image processing --- segmentation --- safe treatment --- Hermite interpolation --- nodal systems --- unit circle --- circular membrane --- fluid-structure interaction --- differential-integral equations --- power series method --- closed-form solution --- time series model --- wavelet transform --- ARIMA model --- neural network NARX --- ionospheric parameters --- courtyard --- climate change --- microclimate --- Support Vector Regression (SVR) --- machine learning --- matrix functions --- matrix hyperbolic tangent --- matrix exponential --- Taylor series --- matrix polynomial evaluation --- n/a --- Kendall's tau --- Schrödinger operator

Listing 1 - 10 of 12 << page
of 2
>>
Sort by