Narrow your search

Library

KU Leuven (5)

VUB (5)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULiège (4)

VIVES (4)

UAntwerpen (3)

More...

Resource type

book (6)

digital (1)


Language

English (6)


Year
From To Submit

2010 (3)

2007 (1)

1988 (1)

1979 (1)

Listing 1 - 6 of 6
Sort by
Seminar on micro-local analysis
Authors: --- ---
ISBN: 0691082286 0691082324 1400881579 Year: 1979 Publisher: Princeton, N.J.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Based on a seminar sponsored by the Institute for Advanced Study in 1977-1978, this set of papers introduces micro-local analysis concisely and clearly to mathematicians with an analytical background. The papers treat the theory of microfunctions and applications such as boundary values of elliptic partial differential equations, propagation of singularities in the vicinity of degenerate characteristics, holonomic systems, Feynman integrals from the hyperfunction point of view, and harmonic analysis on Lie groups.

Keywords

Mathematical analysis --- Differential geometry. Global analysis --- 517.98 --- -Advanced calculus --- Analysis (Mathematics) --- Algebra --- Functional analysis and operator theory --- Addresses, essays, lectures --- Mathematical analysis. --- Addresses, essays, lectures. --- -517.1 Mathematical analysis --- 517.98 Functional analysis and operator theory --- -Functional analysis and operator theory --- -517.98 Functional analysis and operator theory --- 517.1 Mathematical analysis --- 517.1. --- 517.1 --- Addition. --- Analytic function. --- Analytic manifold. --- Asymptotic analysis. --- Bernhard Riemann. --- Boundary value problem. --- Bounded operator. --- Cartan subgroup. --- Characterization (mathematics). --- Class function (algebra). --- Closed-form expression. --- Codimension. --- Cohomology. --- Compact space. --- Comparison theorem. --- Contact geometry. --- Continuous function. --- Continuous linear operator. --- Convex hull. --- Cotangent bundle. --- D-module. --- Degenerate bilinear form. --- Diagonal matrix. --- Differentiable manifold. --- Differential operator. --- Dimension (vector space). --- Dimension. --- Elliptic partial differential equation. --- Equation. --- Existence theorem. --- Fourier integral operator. --- Generic point. --- Group theory. --- Harmonic analysis. --- Holomorphic function. --- Holonomic. --- Homogeneous space. --- Hyperfunction. --- Hypersurface. --- Identity element. --- Irreducible representation. --- Killing form. --- Lagrangian (field theory). --- Lie algebra. --- Lie group. --- Linear differential equation. --- Locally compact space. --- Masaki Kashiwara. --- Maximal ideal. --- Monodromy. --- Natural number. --- Neighbourhood (mathematics). --- Ordinary differential equation. --- Orthogonal complement. --- Partial differential equation. --- Path integral formulation. --- Proper map. --- Pseudo-differential operator. --- Regularity theorem. --- Sigurdur Helgason (mathematician). --- Submanifold. --- Subset. --- Summation. --- Symmetric space. --- Symplectic geometry. --- Tangent cone. --- Theorem. --- Topological space. --- Vector bundle. --- Victor Guillemin. --- Weyl group. --- Analyse microlocale


Book
Matrices, moments, and quadrature with applications
Authors: ---
ISBN: 9780691143415 0691143412 9786612458019 1282936077 1282458019 1400833884 9781400833887 9781282458017 9781282936072 Year: 2010 Publisher: Princeton, N.J. : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This computationally oriented book describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. The book bridges different mathematical areas to obtain algorithms to estimate bilinear forms involving two vectors and a function of the matrix. The first part of the book provides the necessary mathematical background and explains the theory. The second part describes the applications and gives numerical examples of the algorithms and techniques developed in the first part. Applications addressed in the book include computing elements of functions of matrices; obtaining estimates of the error norm in iterative methods for solving linear systems and computing parameters in least squares and total least squares; and solving ill-posed problems using Tikhonov regularization. This book will interest researchers in numerical linear algebra and matrix computations, as well as scientists and engineers working on problems involving computation of bilinear forms.

Keywords

Matrices. --- Numerical analysis. --- Mathematical analysis --- Algebra, Matrix --- Cracovians (Mathematics) --- Matrix algebra --- Matrixes (Algebra) --- Algebra, Abstract --- Algebra, Universal --- Matrices --- Numerical analysis --- Algorithm. --- Analysis of algorithms. --- Analytic function. --- Asymptotic analysis. --- Basis (linear algebra). --- Basis function. --- Biconjugate gradient method. --- Bidiagonal matrix. --- Bilinear form. --- Calculation. --- Characteristic polynomial. --- Chebyshev polynomials. --- Coefficient. --- Complex number. --- Computation. --- Condition number. --- Conjugate gradient method. --- Conjugate transpose. --- Cross-validation (statistics). --- Curve fitting. --- Degeneracy (mathematics). --- Determinant. --- Diagonal matrix. --- Dimension (vector space). --- Eigenvalues and eigenvectors. --- Equation. --- Estimation. --- Estimator. --- Exponential function. --- Factorization. --- Function (mathematics). --- Function of a real variable. --- Functional analysis. --- Gaussian quadrature. --- Hankel matrix. --- Hermite interpolation. --- Hessenberg matrix. --- Hilbert matrix. --- Holomorphic function. --- Identity matrix. --- Interlacing (bitmaps). --- Inverse iteration. --- Inverse problem. --- Invertible matrix. --- Iteration. --- Iterative method. --- Jacobi matrix. --- Krylov subspace. --- Laguerre polynomials. --- Lanczos algorithm. --- Linear differential equation. --- Linear regression. --- Linear subspace. --- Logarithm. --- Machine epsilon. --- Matrix function. --- Matrix polynomial. --- Maxima and minima. --- Mean value theorem. --- Meromorphic function. --- Moment (mathematics). --- Moment matrix. --- Moment problem. --- Monic polynomial. --- Monomial. --- Monotonic function. --- Newton's method. --- Numerical integration. --- Numerical linear algebra. --- Orthogonal basis. --- Orthogonal matrix. --- Orthogonal polynomials. --- Orthogonal transformation. --- Orthogonality. --- Orthogonalization. --- Orthonormal basis. --- Partial fraction decomposition. --- Polynomial. --- Preconditioner. --- QR algorithm. --- QR decomposition. --- Quadratic form. --- Rate of convergence. --- Recurrence relation. --- Regularization (mathematics). --- Rotation matrix. --- Singular value. --- Square (algebra). --- Summation. --- Symmetric matrix. --- Theorem. --- Tikhonov regularization. --- Trace (linear algebra). --- Triangular matrix. --- Tridiagonal matrix. --- Upper and lower bounds. --- Variable (mathematics). --- Vector space. --- Weight function.

Positive definite matrices
Author:
ISBN: 1282129740 9786612129742 1400827787 9781400827787 9781282129740 0691129185 9780691129181 6612129743 Year: 2007 Publisher: Princeton, N.J. : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book represents the first synthesis of the considerable body of new research into positive definite matrices. These matrices play the same role in noncommutative analysis as positive real numbers do in classical analysis. They have theoretical and computational uses across a broad spectrum of disciplines, including calculus, electrical engineering, statistics, physics, numerical analysis, quantum information theory, and geometry. Through detailed explanations and an authoritative and inspiring writing style, Rajendra Bhatia carefully develops general techniques that have wide applications in the study of such matrices. Bhatia introduces several key topics in functional analysis, operator theory, harmonic analysis, and differential geometry--all built around the central theme of positive definite matrices. He discusses positive and completely positive linear maps, and presents major theorems with simple and direct proofs. He examines matrix means and their applications, and shows how to use positive definite functions to derive operator inequalities that he and others proved in recent years. He guides the reader through the differential geometry of the manifold of positive definite matrices, and explains recent work on the geometric mean of several matrices. Positive Definite Matrices is an informative and useful reference book for mathematicians and other researchers and practitioners. The numerous exercises and notes at the end of each chapter also make it the ideal textbook for graduate-level courses.

Keywords

Matrices. --- Algebra, Matrix --- Cracovians (Mathematics) --- Matrix algebra --- Matrixes (Algebra) --- Algebra, Abstract --- Algebra, Universal --- Matrices --- 512.64 --- 512.64 Linear and multilinear algebra. Matrix theory --- Linear and multilinear algebra. Matrix theory --- Addition. --- Analytic continuation. --- Arithmetic mean. --- Banach space. --- Binomial theorem. --- Block matrix. --- Bochner's theorem. --- Calculation. --- Cauchy matrix. --- Cauchy–Schwarz inequality. --- Characteristic polynomial. --- Coefficient. --- Commutative property. --- Compact space. --- Completely positive map. --- Complex number. --- Computation. --- Continuous function. --- Convex combination. --- Convex function. --- Convex set. --- Corollary. --- Density matrix. --- Diagonal matrix. --- Differential geometry. --- Eigenvalues and eigenvectors. --- Equation. --- Equivalence relation. --- Existential quantification. --- Extreme point. --- Fourier transform. --- Functional analysis. --- Fundamental theorem. --- G. H. Hardy. --- Gamma function. --- Geometric mean. --- Geometry. --- Hadamard product (matrices). --- Hahn–Banach theorem. --- Harmonic analysis. --- Hermitian matrix. --- Hilbert space. --- Hyperbolic function. --- Infimum and supremum. --- Infinite divisibility (probability). --- Invertible matrix. --- Lecture. --- Linear algebra. --- Linear map. --- Logarithm. --- Logarithmic mean. --- Mathematics. --- Matrix (mathematics). --- Matrix analysis. --- Matrix unit. --- Metric space. --- Monotonic function. --- Natural number. --- Open set. --- Operator algebra. --- Operator system. --- Orthonormal basis. --- Partial trace. --- Positive definiteness. --- Positive element. --- Positive map. --- Positive semidefinite. --- Positive-definite function. --- Positive-definite matrix. --- Probability measure. --- Probability. --- Projection (linear algebra). --- Quantity. --- Quantum computing. --- Quantum information. --- Quantum statistical mechanics. --- Real number. --- Riccati equation. --- Riemannian geometry. --- Riemannian manifold. --- Riesz representation theorem. --- Right half-plane. --- Schur complement. --- Schur's theorem. --- Scientific notation. --- Self-adjoint operator. --- Sign (mathematics). --- Special case. --- Spectral theorem. --- Square root. --- Standard basis. --- Summation. --- Tensor product. --- Theorem. --- Toeplitz matrix. --- Unit vector. --- Unitary matrix. --- Unitary operator. --- Upper half-plane. --- Variable (mathematics).


Book
Graph Theoretic Methods in Multiagent Networks
Authors: ---
ISBN: 1282979108 9786612979101 1400835356 9781400835355 9780691140612 0691140618 Year: 2010 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

This accessible book provides an introduction to the analysis and design of dynamic multiagent networks. Such networks are of great interest in a wide range of areas in science and engineering, including: mobile sensor networks, distributed robotics such as formation flying and swarming, quantum networks, networked economics, biological synchronization, and social networks. Focusing on graph theoretic methods for the analysis and synthesis of dynamic multiagent networks, the book presents a powerful new formalism and set of tools for networked systems. The book's three sections look at foundations, multiagent networks, and networks as systems. The authors give an overview of important ideas from graph theory, followed by a detailed account of the agreement protocol and its various extensions, including the behavior of the protocol over undirected, directed, switching, and random networks. They cover topics such as formation control, coverage, distributed estimation, social networks, and games over networks. And they explore intriguing aspects of viewing networks as systems, by making these networks amenable to control-theoretic analysis and automatic synthesis, by monitoring their dynamic evolution, and by examining higher-order interaction models in terms of simplicial complexes and their applications. The book will interest graduate students working in systems and control, as well as in computer science and robotics. It will be a standard reference for researchers seeking a self-contained account of system-theoretic aspects of multiagent networks and their wide-ranging applications. This book has been adopted as a textbook at the following universities: ? University of Stuttgart, Germany Royal Institute of Technology, Sweden Johannes Kepler University, Austria Georgia Tech, USA University of Washington, USA Ohio University, USA

Keywords

Network analysis (Planning) --- Multiagent systems --- Agent-based model (Computer software) --- MASs (Multiagent systems) --- Multi-agent systems --- Systems, Multiagent --- Intelligent agents (Computer software) --- Project networks --- Planning --- System analysis --- Graphic methods. --- Mathematical models. --- Mathematical models --- Graphic methods --- Addition. --- Adjacency matrix. --- Algebraic graph theory. --- Algorithm. --- Automorphism. --- Bipartite graph. --- Cardinality. --- Cartesian product. --- Circulant graph. --- Combinatorics. --- Complete graph. --- Computation. --- Connectivity (graph theory). --- Controllability. --- Convex combination. --- Corollary. --- Cycle graph (algebra). --- Cycle space. --- Degree (graph theory). --- Degree matrix. --- Diagonal matrix. --- Diameter. --- Differentiable function. --- Dimension. --- Directed graph. --- Division by zero. --- Dynamical system. --- Eigenvalues and eigenvectors. --- Equilibrium point. --- Estimation. --- Estimator. --- Existential quantification. --- Extremal graph theory. --- Graph (discrete mathematics). --- Graph theory. --- Identity matrix. --- Incidence matrix. --- Information exchange. --- Initial condition. --- Interconnection. --- Iteration. --- Kalman filter. --- Kronecker product. --- LTI system theory. --- LaSalle's invariance principle. --- Laplacian matrix. --- Least squares. --- Line graph. --- Linear map. --- Lipschitz continuity. --- Lyapunov function. --- Lyapunov stability. --- Markov chain. --- Mathematical optimization. --- Matrix exponential. --- Measurement. --- Multi-agent system. --- Nash equilibrium. --- Natural number. --- Network topology. --- Nonnegative matrix. --- Notation. --- Observability. --- Optimal control. --- Optimization problem. --- Pairwise. --- Parameter. --- Path graph. --- Permutation matrix. --- Permutation. --- Positive semidefinite. --- Positive-definite matrix. --- Probability. --- Quantity. --- Random graph. --- Random variable. --- Rate of convergence. --- Requirement. --- Result. --- Robotics. --- Scientific notation. --- Sensor. --- Sign (mathematics). --- Simplicial complex. --- Special case. --- Spectral graph theory. --- Stochastic matrix. --- Strongly connected component. --- Subset. --- Summation. --- Supergraph. --- Symmetric matrix. --- Systems theory. --- Theorem. --- Theory. --- Unit interval. --- Upper and lower bounds. --- Variable (mathematics). --- Vector space. --- Without loss of generality.


Multi
Graph theoretic methods in multiagent networks
Authors: ---
ISBN: 9781400835355 9780691140612 1282979108 9786612979101 1400835356 9781282979109 Year: 2010 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This accessible book provides an introduction to the analysis and design of dynamic multiagent networks. Such networks are of great interest in a wide range of areas in science and engineering, including: mobile sensor networks, distributed robotics such as formation flying and swarming, quantum networks, networked economics, biological synchronization, and social networks. Focusing on graph theoretic methods for the analysis and synthesis of dynamic multiagent networks, the book presents a powerful new formalism and set of tools for networked systems. The book's three sections look at foundations, multiagent networks, and networks as systems. The authors give an overview of important ideas from graph theory, followed by a detailed account of the agreement protocol and its various extensions, including the behavior of the protocol over undirected, directed, switching, and random networks. They cover topics such as formation control, coverage, distributed estimation, social networks, and games over networks. And they explore intriguing aspects of viewing networks as systems, by making these networks amenable to control-theoretic analysis and automatic synthesis, by monitoring their dynamic evolution, and by examining higher-order interaction models in terms of simplicial complexes and their applications. The book will interest graduate students working in systems and control, as well as in computer science and robotics. It will be a standard reference for researchers seeking a self-contained account of system-theoretic aspects of multiagent networks and their wide-ranging applications. This book has been adopted as a textbook at the following universities: ? University of Stuttgart, Germany Royal Institute of Technology, Sweden Johannes Kepler University, Austria Georgia Tech, USA University of Washington, USA Ohio University, USA

Keywords

Mathematics --- Network analysis (Planning) --- Multiagent systems --- Graphic methods. --- Mathematical models. --- Addition. --- Adjacency matrix. --- Algebraic graph theory. --- Algorithm. --- Automorphism. --- Bipartite graph. --- Cardinality. --- Cartesian product. --- Circulant graph. --- Combinatorics. --- Complete graph. --- Computation. --- Connectivity (graph theory). --- Controllability. --- Convex combination. --- Corollary. --- Cycle graph (algebra). --- Cycle space. --- Degree (graph theory). --- Degree matrix. --- Diagonal matrix. --- Diameter. --- Differentiable function. --- Dimension. --- Directed graph. --- Division by zero. --- Dynamical system. --- Eigenvalues and eigenvectors. --- Equilibrium point. --- Estimation. --- Estimator. --- Existential quantification. --- Extremal graph theory. --- Graph (discrete mathematics). --- Graph theory. --- Identity matrix. --- Incidence matrix. --- Information exchange. --- Initial condition. --- Interconnection. --- Iteration. --- Kalman filter. --- Kronecker product. --- LTI system theory. --- LaSalle's invariance principle. --- Laplacian matrix. --- Least squares. --- Line graph. --- Linear map. --- Lipschitz continuity. --- Lyapunov function. --- Lyapunov stability. --- Markov chain. --- Mathematical optimization. --- Matrix exponential. --- Measurement. --- Multi-agent system. --- Nash equilibrium. --- Natural number. --- Network topology. --- Nonnegative matrix. --- Notation. --- Observability. --- Optimal control. --- Optimization problem. --- Pairwise. --- Parameter. --- Path graph. --- Permutation matrix. --- Permutation. --- Positive semidefinite. --- Positive-definite matrix. --- Probability. --- Quantity. --- Random graph. --- Random variable. --- Rate of convergence. --- Requirement. --- Result. --- Robotics. --- Scientific notation. --- Sensor. --- Sign (mathematics). --- Simplicial complex. --- Special case. --- Spectral graph theory. --- Stochastic matrix. --- Strongly connected component. --- Subset. --- Summation. --- Supergraph. --- Symmetric matrix. --- Systems theory. --- Theorem. --- Theory. --- Unit interval. --- Upper and lower bounds. --- Variable (mathematics). --- Vector space. --- Without loss of generality.

Gauss sums, Kloosterman sums, and monodromy groups
Author:
ISBN: 0691084335 0691084327 1400882125 Year: 1988 Volume: vol 116 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The study of exponential sums over finite fields, begun by Gauss nearly two centuries ago, has been completely transformed in recent years by advances in algebraic geometry, culminating in Deligne's work on the Weil Conjectures. It now appears as a very attractive mixture of algebraic geometry, representation theory, and the sheaf-theoretic incarnations of such standard constructions of classical analysis as convolution and Fourier transform. The book is simultaneously an account of some of these ideas, techniques, and results, and an account of their application to concrete equidistribution questions concerning Kloosterman sums and Gauss sums.

Keywords

Group theory --- Algebraic geometry --- Number theory --- 511.33 --- Analytical and multiplicative number theory. Asymptotics. Sieves etc. --- 511.33 Analytical and multiplicative number theory. Asymptotics. Sieves etc. --- Gaussian sums --- Homology theory --- Kloosterman sums --- Monodromy groups --- Kloostermann sums --- Sums, Kloosterman --- Sums, Kloostermann --- Exponential sums --- Cohomology theory --- Contrahomology theory --- Algebraic topology --- Gauss sums --- Sums, Gaussian --- Analytical and multiplicative number theory. Asymptotics. Sieves etc --- Gaussian sums. --- Kloosterman sums. --- Homology theory. --- Monodromy groups. --- Number theory. --- Nombres, Théorie des. --- Exponential sums. --- Sommes exponentielles. --- Arithmetic --- Arithmétique --- Geometry, Algebraic. --- Géométrie algébrique --- Abelian category. --- Absolute Galois group. --- Absolute value. --- Additive group. --- Adjoint representation. --- Affine variety. --- Algebraic group. --- Automorphic form. --- Automorphism. --- Big O notation. --- Cartan subalgebra. --- Characteristic polynomial. --- Classification theorem. --- Coefficient. --- Cohomology. --- Cokernel. --- Combination. --- Commutator. --- Compactification (mathematics). --- Complex Lie group. --- Complex number. --- Conjugacy class. --- Continuous function. --- Convolution theorem. --- Convolution. --- Determinant. --- Diagonal matrix. --- Dimension (vector space). --- Direct sum. --- Dual basis. --- Eigenvalues and eigenvectors. --- Empty set. --- Endomorphism. --- Equidistribution theorem. --- Estimation. --- Exactness. --- Existential quantification. --- Exponential sum. --- Exterior algebra. --- Faithful representation. --- Finite field. --- Finite group. --- Four-dimensional space. --- Frobenius endomorphism. --- Fundamental group. --- Fundamental representation. --- Galois group. --- Gauss sum. --- Homomorphism. --- Integer. --- Irreducibility (mathematics). --- Isomorphism class. --- Kloosterman sum. --- L-function. --- Leray spectral sequence. --- Lie algebra. --- Lie theory. --- Maximal compact subgroup. --- Method of moments (statistics). --- Monodromy theorem. --- Monodromy. --- Morphism. --- Multiplicative group. --- Natural number. --- Nilpotent. --- Open problem. --- P-group. --- Pairing. --- Parameter space. --- Parameter. --- Partially ordered set. --- Perfect field. --- Point at infinity. --- Polynomial ring. --- Prime number. --- Quotient group. --- Representation ring. --- Representation theory. --- Residue field. --- Riemann hypothesis. --- Root of unity. --- Sheaf (mathematics). --- Simple Lie group. --- Skew-symmetric matrix. --- Smooth morphism. --- Special case. --- Spin representation. --- Subgroup. --- Support (mathematics). --- Symmetric matrix. --- Symplectic group. --- Symplectic vector space. --- Tensor product. --- Theorem. --- Trace (linear algebra). --- Trivial representation. --- Variable (mathematics). --- Weil conjectures. --- Weyl character formula. --- Zariski topology. --- Geometry, Algebraic

Listing 1 - 6 of 6
Sort by