Listing 1 - 10 of 1398 | << page >> |
Sort by
|
Choose an application
Large-scale data analytics using machine learning (ML) underpins many modern data-driven applications. ML systems provide means of specifying and executing these ML workloads in an efficient and scalable manner. Data management is at the heart of many ML systems due to data-driven application characteristics, data-centric workload characteristics, and system architectures inspired by classical data management techniques. In this book, we follow this data-centric view of ML systems and aim to provide a comprehensive overview of data management in ML systems for the end-to-end data science or ML lifecycle. We review multiple interconnected lines of work: (1) ML support in database (DB) systems, (2) DB-inspired ML systems, and (3) ML lifecycle systems. Covered topics include: in-database analytics via query generation and user-defined functions, factorized and statistical-relational learning; optimizing compilers for ML workloads; execution strategies and hardware accelerators; data access methods such as compression, partitioning and indexing; resource elasticity and cloud markets; as well as systems for data preparation for ML, model selection, model management, model debugging, and model serving. Given the rapidly evolving field, we strive for a balance between an up-to-date survey of ML systems, an overview of the underlying concepts and techniques, as well as pointers to open research questions. Hence, this book might serve as a starting point for both systems researchers and developers.
Choose an application
Interacting with graphs using queries has emerged as an important research problem for real-world applications that center on large graph data. Given the syntactic complexity of graph query languages (e.g., SPARQL, Cypher), visual graph query interfaces make it easy for non-programmers to query such graph data repositories. In this book, we present recent developments in the emerging area of visual graph querying paradigm that bridges traditional graph querying with human computer interaction (HCI). Specifically, we focus on techniques that emphasize deep integration between the visual graph query interface and the underlying graph query engine. We discuss various strategies and guidance for constructing graph queries visually, interleaving processing of graph queries and visual actions, visual exploration of graph query results, and automated performance study of visual graph querying frameworks. In addition, this book highlights open problems and new research directions. In summary, in this book, we review and summarize the research thus far into the integration of HCI and graph querying to facilitate user-friendly interaction with graph-structured data, giving researchers a snapshot of the current state of the art in this topic, and future research directions.
Choose an application
Data profiling refers to the activity of collecting data about data, {i.e.}, metadata. Most IT professionals and researchers who work with data have engaged in data profiling, at least informally, to understand and explore an unfamiliar dataset or to determine whether a new dataset is appropriate for a particular task at hand. Data profiling results are also important in a variety of other situations, including query optimization, data integration, and data cleaning. Simple metadata are statistics, such as the number of rows and columns, schema and datatype information, the number of distinct values, statistical value distributions, and the number of null or empty values in each column. More complex types of metadata are statements about multiple columns and their correlation, such as candidate keys, functional dependencies, and other types of dependencies. This book provides a classification of the various types of profilable metadata, discusses popular data profiling tasks, and surveys state-of-the-art profiling algorithms. While most of the book focuses on tasks and algorithms for relational data profiling, we also briefly discuss systems and techniques for profiling non-relational data such as graphs and text. We conclude with a discussion of data profiling challenges and directions for future work in this area.
Choose an application
This book explores the implications of non-volatile memory (NVM) for database management systems (DBMSs). The advent of NVM will fundamentally change the dichotomy between volatile memory and durable storage in DBMSs. These new NVM devices are almost as fast as volatile memory, but all writes to them are persistent even after power loss. Existing DBMSs are unable to take full advantage of this technology because their internal architectures are predicated on the assumption that memory is volatile. With NVM, many of the components of legacy DBMSs are unnecessary and will degrade the performance of data-intensive applications. We present the design and implementation of DBMS architectures that are explicitly tailored for NVM. The book focuses on three aspects of a DBMS: (1) logging and recovery, (2) storage and buffer management, and (3) indexing. First, we present a logging and recovery protocol that enables the DBMS to support near-instantaneous recovery. Second, we propose a storage engine architecture and buffer management policy that leverages the durability and byte-addressability properties of NVM to reduce data duplication and data migration. Third, the book presents the design of a range index tailored for NVM that is latch-free yet simple to implement. All together, the work described in this book illustrates that rethinking the fundamental algorithms and data structures employed in a DBMS for NVM improves performance and availability, reduces operational cost, and simplifies software development.
Choose an application
This book is a gentle introduction to dominance-based query processing techniques and their applications. The book aims to present fundamental as well as some advanced issues in the area in a precise, but easy-to-follow, manner. Dominance is an intuitive concept that can be used in many different ways in diverse application domains. The concept of dominance is based on the values of the attributes of each object. An object ���� dominates another object ���� if ���� is better than ����. This goodness criterion may differ from one user to another. However, all decisions boil down to the minimization or maximization of attribute values. In this book, we will explore algorithms and applications related to dominance-based query processing. The concept of dominance has a long history in finance and multi-criteria optimization. However, the introduction of the concept to the database community in 2001 inspired many researchers to contribute to the area. Therefore, many algorithmic techniques have been proposed for the efficient processing of dominance-based queries, such as skyline queries, ����-dominant queries, and top-���� dominating queries, just to name a few.
Choose an application
Since the introduction of Bitcoin—the first widespread application driven by blockchain—the interest of the public and private sectors in blockchain has skyrocketed. In recent years, blockchain-based fabrics have been used to address challenges in diverse fields such as trade, food production, property rights, identity-management, aid delivery, health care, and fraud prevention. This widespread interest follows from fundamental concepts on which blockchains are built that together embed the notion of trust, upon which blockchains are built. 1. Blockchains provide data transparancy. Data in a blockchain is stored in the form of a ledger, which contains an ordered history of all the transactions. This facilitates oversight and auditing. 2. Blockchains ensure data integrity by using strong cryptographic primitives. This guarantees that transactions accepted by the blockchain are authenticated by its issuer, are immutable, and cannot be repudiated by the issuer. This ensures accountability. 3. Blockchains are decentralized, democratic, and resilient. They use consensus-based replication to decentralize the ledger among many independent participants. Thus, it can operate completely decentralized and does not require trust in a single authority. Additions to the chain are performed by consensus, in which all participants have a democratic voice in maintaining the integrity of the blockchain. Due to the usage of replication and consensus, blockchains are also highly resilient to malicious attacks even when a significant portion of the participants are malicious. It further increases the opportunity for fairness and equity through democratization. These fundamental concepts and the technologies behind them—a generic ledger-based data model, cryptographically ensured data integrity, and consensus-based replication—prove to be a powerful and inspiring combination, a catalyst to promote computational trust. In this book, we present an in-depth study of blockchain, unraveling its revolutionary promise to instill computational trust in society, all carefully tailored to a broad audience including students, researchers, and practitioners. We offer a comprehensive overview of theoretical limitations and practical usability of consensus protocols while examining the diverse landscape of how blockchains are manifested in their permissioned and permissionless forms.
Choose an application
The topic of using views to answer queries has been popular for a few decades now, as it cuts across domains such as query optimization, information integration, data warehousing, website design and, recently, database-as-a-service and data placement in cloud systems. This book assembles foundational work on answering queries using views in a self-contained manner, with an effort to choose material that constitutes the backbone of the research. It presents efficient algorithms and covers the following problems: query containment; rewriting queries using views in various logical languages; equivalent rewritings and maximally contained rewritings; and computing certain answers in the data-integration and data-exchange settings. Query languages that are considered are fragments of SQL, in particular select-project-join queries, also called conjunctive queries (with or without arithmetic comparisons or negation), and aggregate SQL queries. This second edition includes two new chapters that refer to tree-like data and respective query languages. Chapter 8 presents the data model for XML documents and the XPath query language, and Chapter 9 provides a theoretical presentation of tree-like data model and query language where the tuples of a relation share a tree-structured schema for that relation and the query language is a dialect of SQL with evaluation techniques appropriately modified to fit the richer schema.
Choose an application
Communities serve as basic structural building blocks for understanding the organization of many real-world networks, including social, biological, collaboration, and communication networks. Recently, community search over graphs has attracted significantly increasing attention, from small, simple, and static graphs to big, evolving, attributed, and location-based graphs. In this book, we first review the basic concepts of networks, communities, and various kinds of dense subgraph models. We then survey the state of the art in community search techniques on various kinds of networks across different application areas. Specifically, we discuss cohesive community search, attributed community search, social circle discovery, and geo-social group search. We highlight the challenges posed by different community search problems. We present their motivations, principles, methodologies, algorithms, and applications, and provide a comprehensive comparison of the existing techniques. This book finally concludes by listing publicly available real-world datasets and useful tools for facilitating further research, and by offering further readings and future directions of research in this important and growing area.
Choose an application
Incomplete data is part of life and almost all areas of scientific studies. Users tend to skip certain fields when they fill out online forms; participants choose to ignore sensitive questions on surveys; sensors fail, resulting in the loss of certain readings; publicly viewable satellite map services have missing data in many mobile applications; and in privacy-preserving applications, the data is incomplete deliberately in order to preserve the sensitivity of some attribute values. Query processing is a fundamental problem in computer science, and is useful in a variety of applications. In this book, we mostly focus on the query processing over incomplete databases, which involves finding a set of qualified objects from a specified incomplete dataset in order to support a wide spectrum of real-life applications. We first elaborate the three general kinds of methods of handling incomplete data, including (i) discarding the data with missing values, (ii) imputation for the missing values, and (iii) just depending on the observed data values. For the third method type, we introduce the semantics of k-nearest neighbor (kNN) search, skyline query, and top-k dominating query on incomplete data, respectively. In terms of the three representative queries over incomplete data, we investigate some advanced techniques to process incomplete data queries, including indexing, pruning as well as crowdsourcing techniques.
Choose an application
The last decade has brought groundbreaking developments in transaction processing. This resurgence of an otherwise mature research area has spurred from the diminishing cost per GB of DRAM that allows many transaction processing workloads to be entirely memory-resident. This shift demanded a pause to fundamentally rethink the architecture of database systems. The data storage lexicon has now expanded beyond spinning disks and RAID levels to include the cache hierarchy, memory consistency models, cache coherence and write invalidation costs, NUMA regions, and coherence domains. New memory technologies promise fast non-volatile storage and expose unchartered trade-offs for transactional durability, such as exploiting byte-addressable hot and cold storage through persistent programming that promotes simpler recovery protocols. In the meantime, the plateauing single-threaded processor performance has brought massive concurrency within a single node, first in the form of multi-core, and now with many-core and heterogeneous processors. The exciting possibility to reshape the storage, transaction, logging, and recovery layers of next-generation systems on emerging hardware have prompted the database research community to vigorously debate the trade-offs between specialized kernels that narrowly focus on transaction processing performance vs. designs that permit transactionally consistent data accesses from decision support and analytical workloads. In this book, we aim to classify and distill the new body of work on transaction processing that has surfaced in the last decade to navigate researchers and practitioners through this intricate research subject.
Listing 1 - 10 of 1398 | << page >> |
Sort by
|