Narrow your search
Listing 1 - 10 of 13 << page
of 2
>>
Sort by

Book
Neural Signal Estimation in the Human Brain
Authors: --- ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The ultimate goal of functional brain imaging is to provide optimal estimates of the neural signals flowing through the long-range and local pathways mediating all behavioral performance and conscious experience. In functional MRI (Magnetic Resonance Imaging), despite its impressive spatial resolution, this goal has been somewhat undermined by the fact that the fMRI response is essentially a blood-oxygenation level dependent (BOLD) signal that only indirectly reflects the nearby neural activity. The vast majority of fMRI studies restrict themselves to describing the details of these BOLD signals and deriving non-quantitative inferences about their implications for the underlying neural activity. This Frontiers Research Topic welcomed empirical and theoretical contributions that focus on the explicit relationship of non-invasive brain imaging signals to the causative neural activity. The articles presented within this resulting eBook aim to both highlight the importance and improve the non-invasive estimation of neural signals in the human brain. To achieve this aim, the following issues are targeted: (1) The spatial limitations of source localization when using MEG/EEG. (2) The coupling of the BOLD signal to neural activity. Articles discuss how animal studies are fundamental in increasing our understanding of BOLD fMRI signals, analyze how non-neuronal cell types may contribute to the modulation of cerebral blood flow, and use modeling to improve our understanding of how local field potentials are linked to the BOLD signal. (3) The contribution of excitatory and inhibitory neuronal activity to the BOLD signal. (4) Assessment of neural connectivity through the use of resting state data, computational modeling and functional Diffusion Tensor Imaging (fDTI) approaches.


Book
Neural Signal Estimation in the Human Brain
Authors: --- ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The ultimate goal of functional brain imaging is to provide optimal estimates of the neural signals flowing through the long-range and local pathways mediating all behavioral performance and conscious experience. In functional MRI (Magnetic Resonance Imaging), despite its impressive spatial resolution, this goal has been somewhat undermined by the fact that the fMRI response is essentially a blood-oxygenation level dependent (BOLD) signal that only indirectly reflects the nearby neural activity. The vast majority of fMRI studies restrict themselves to describing the details of these BOLD signals and deriving non-quantitative inferences about their implications for the underlying neural activity. This Frontiers Research Topic welcomed empirical and theoretical contributions that focus on the explicit relationship of non-invasive brain imaging signals to the causative neural activity. The articles presented within this resulting eBook aim to both highlight the importance and improve the non-invasive estimation of neural signals in the human brain. To achieve this aim, the following issues are targeted: (1) The spatial limitations of source localization when using MEG/EEG. (2) The coupling of the BOLD signal to neural activity. Articles discuss how animal studies are fundamental in increasing our understanding of BOLD fMRI signals, analyze how non-neuronal cell types may contribute to the modulation of cerebral blood flow, and use modeling to improve our understanding of how local field potentials are linked to the BOLD signal. (3) The contribution of excitatory and inhibitory neuronal activity to the BOLD signal. (4) Assessment of neural connectivity through the use of resting state data, computational modeling and functional Diffusion Tensor Imaging (fDTI) approaches.


Book
Neural Signal Estimation in the Human Brain
Authors: --- ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The ultimate goal of functional brain imaging is to provide optimal estimates of the neural signals flowing through the long-range and local pathways mediating all behavioral performance and conscious experience. In functional MRI (Magnetic Resonance Imaging), despite its impressive spatial resolution, this goal has been somewhat undermined by the fact that the fMRI response is essentially a blood-oxygenation level dependent (BOLD) signal that only indirectly reflects the nearby neural activity. The vast majority of fMRI studies restrict themselves to describing the details of these BOLD signals and deriving non-quantitative inferences about their implications for the underlying neural activity. This Frontiers Research Topic welcomed empirical and theoretical contributions that focus on the explicit relationship of non-invasive brain imaging signals to the causative neural activity. The articles presented within this resulting eBook aim to both highlight the importance and improve the non-invasive estimation of neural signals in the human brain. To achieve this aim, the following issues are targeted: (1) The spatial limitations of source localization when using MEG/EEG. (2) The coupling of the BOLD signal to neural activity. Articles discuss how animal studies are fundamental in increasing our understanding of BOLD fMRI signals, analyze how non-neuronal cell types may contribute to the modulation of cerebral blood flow, and use modeling to improve our understanding of how local field potentials are linked to the BOLD signal. (3) The contribution of excitatory and inhibitory neuronal activity to the BOLD signal. (4) Assessment of neural connectivity through the use of resting state data, computational modeling and functional Diffusion Tensor Imaging (fDTI) approaches.


Book
Introduction to diffusion tensor imaging
Authors: ---
ISBN: 0123984076 0123983983 1299773613 9780123984074 9780123983985 Year: 2013 Publisher: Burlington Elsevier Science

Loading...
Export citation

Choose an application

Bookmark

Abstract

The concepts behind diffusion tensor imaging (DTI) are commonly difficult to grasp, even for magnetic resonance physicists. To make matters worse, a many more complex higher-order methods have been proposed over the last few years to overcome the now well-known deficiencies of DTI. In Introduction to Diffusion Tensor Imaging: And Higher Order Models, these concepts are explained through extensive use of illustrations rather than equations to help readers gain a more intuitive understanding of the inner workings of these techniques. Emphasis is placed on the interpretation of DTI imag

Introduction to diffusion tensor imaging
Author:
ISBN: 9780444528285 0444528288 9780080495767 0080495761 9786611013011 1281013013 Year: 2007 Publisher: Amsterdam Boston Elsevier

Loading...
Export citation

Choose an application

Bookmark

Abstract

The concept of Diffusion Tensor Imaging (DTI) is often difficult to grasp, even for Magnetic Resonance physicists. Introduction to Diffusion Tensor Imaging uses extensive illustrations (not equations) to help readers to understand how DTI works. Emphasis is placed on the interpretation of DTI images, the design of DTI experiments, and the forms of application studies. The theory of DTI is constantly evolving and so there is a need for a textbook that explains how the technique works in a way that is easy to understand - Introduction to Diffusion Tensor Imaging fills this gap.


Book
Bridging the gap before and after birth : methods and technologies to explore the functional neural development in humans
Authors: --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Early human development from late gestation to the neonatal period is a critical time in the individual’s life span. Medical issues that compromise the brain functions during late gestation and the first months of life could lead to different developmental problems with consequent lifelong burdens for the growing individuals and their families, and a major socio-economic impact for the health care system and the whole of society. Any potential alleviation of perinatal adversities holds promise of an improved quality of life for the individual, and a major benefit for the society at large. It remains a concerted worldwide effort to improve our understanding on effective monitoring systems and clinical diagnostic procedures to reduce fetal impairment and improve healthcare in the neonatal and infant period. The focus of this Research Topic will be on the most recent developments and findings in the field of non-invasive functional brain monitoring in order to: 1) increase our knowledge on novel diagnostic tools and procedures for the surveillance of fetuses and newborn babies, 2) help us to perform high quality functional assessment of the developing human brain during pregnancy and after birth, 3) understand and diagnose pathological developments with a potentially high clinical and societal impact, 4) understand how to improve perinatal and infant care. Potential topics include, but are not restricted to: 1) non-invasive electrophysiological monitoring technologies for brain function in the fetus, neonate and infant, such as electroencephalography (EEG), magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI) and near infra-red spectroscopy (NIRS), 2) novel or consolidated analytical methods and models for the quantification and interpretation of the functional signals recorded from the developing brain, 3) typical and atypical brain development during pregnancy and the first years of life, 4) personalized clinical diagnostic procedures for perinatal and paediatric surveillance.


Book
Bridging the gap before and after birth : methods and technologies to explore the functional neural development in humans
Authors: --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Early human development from late gestation to the neonatal period is a critical time in the individual’s life span. Medical issues that compromise the brain functions during late gestation and the first months of life could lead to different developmental problems with consequent lifelong burdens for the growing individuals and their families, and a major socio-economic impact for the health care system and the whole of society. Any potential alleviation of perinatal adversities holds promise of an improved quality of life for the individual, and a major benefit for the society at large. It remains a concerted worldwide effort to improve our understanding on effective monitoring systems and clinical diagnostic procedures to reduce fetal impairment and improve healthcare in the neonatal and infant period. The focus of this Research Topic will be on the most recent developments and findings in the field of non-invasive functional brain monitoring in order to: 1) increase our knowledge on novel diagnostic tools and procedures for the surveillance of fetuses and newborn babies, 2) help us to perform high quality functional assessment of the developing human brain during pregnancy and after birth, 3) understand and diagnose pathological developments with a potentially high clinical and societal impact, 4) understand how to improve perinatal and infant care. Potential topics include, but are not restricted to: 1) non-invasive electrophysiological monitoring technologies for brain function in the fetus, neonate and infant, such as electroencephalography (EEG), magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI) and near infra-red spectroscopy (NIRS), 2) novel or consolidated analytical methods and models for the quantification and interpretation of the functional signals recorded from the developing brain, 3) typical and atypical brain development during pregnancy and the first years of life, 4) personalized clinical diagnostic procedures for perinatal and paediatric surveillance.


Book
Bridging the gap before and after birth : methods and technologies to explore the functional neural development in humans
Authors: --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Early human development from late gestation to the neonatal period is a critical time in the individual’s life span. Medical issues that compromise the brain functions during late gestation and the first months of life could lead to different developmental problems with consequent lifelong burdens for the growing individuals and their families, and a major socio-economic impact for the health care system and the whole of society. Any potential alleviation of perinatal adversities holds promise of an improved quality of life for the individual, and a major benefit for the society at large. It remains a concerted worldwide effort to improve our understanding on effective monitoring systems and clinical diagnostic procedures to reduce fetal impairment and improve healthcare in the neonatal and infant period. The focus of this Research Topic will be on the most recent developments and findings in the field of non-invasive functional brain monitoring in order to: 1) increase our knowledge on novel diagnostic tools and procedures for the surveillance of fetuses and newborn babies, 2) help us to perform high quality functional assessment of the developing human brain during pregnancy and after birth, 3) understand and diagnose pathological developments with a potentially high clinical and societal impact, 4) understand how to improve perinatal and infant care. Potential topics include, but are not restricted to: 1) non-invasive electrophysiological monitoring technologies for brain function in the fetus, neonate and infant, such as electroencephalography (EEG), magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI) and near infra-red spectroscopy (NIRS), 2) novel or consolidated analytical methods and models for the quantification and interpretation of the functional signals recorded from the developing brain, 3) typical and atypical brain development during pregnancy and the first years of life, 4) personalized clinical diagnostic procedures for perinatal and paediatric surveillance.


Book
Diffusion Tensor Imaging : A Practical Handbook
Authors: --- ---
ISBN: 1493931180 1493931172 9781493931170 Year: 2016 Publisher: New York, NY : Springer New York : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides an overview of the practical aspects of diffusion tensor imaging (DTI), from understanding the basis of the technique through selection of the right protocols, trouble-shooting data quality, and analyzing DTI data optimally. DTI is a non-invasive magnetic resonance imaging (MRI) technique for visualizing and quantifying tissue microstructure based on diffusion. The book discusses the theoretical background underlying DTI and advanced techniques based on higher-order models and multi-shell diffusion imaging. It covers the practical implementation of DTI; derivation of information from DTI data; and a range of clinical applications, including neurosurgical planning and the assessment of brain tumors. Its practical utility is enhanced by decision schemes and a fully annotated DTI brain atlas, including color fractional anisotropy maps and 3D tractography reconstructions of major white matter fiber bundles. Featuring contributions from leading specialists in the field of DTI, Diffusion Tensor Imaging: A Practical Handbook is a valuable resource for radiologists, neuroradiologists, MRI technicians, and clinicians.


Book
Degenerative Cervical Myelopathy and the Aging Spine
Authors: --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue contains articles discussing various topics surrounding degenerative cervical myelopathy. The Issue begins with an editorial summarizing the various articles, and is followed by an introductory narrative review focusing on past perspectives, present developments, and future directions. The remaining 11 articles involve a variety of topics, ranging from genetic factors to clinical assessments, imaging, sagittal balance, surgical treatment, and outcome prediction.

Listing 1 - 10 of 13 << page
of 2
>>
Sort by