Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2022 (3)

2020 (1)

2019 (3)

Listing 1 - 7 of 7
Sort by

Book
Wind Turbine Power Optimization Technology
Authors: ---
ISBN: 3039289349 3039289330 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Wind turbines are one of the most promising renewable energy technologies, and this motivates fertile research activity about developments in power optimization. This topic covers a wide range of aspects, from the research on aerodynamics and control design to the industrial applications about on-site wind turbine performance control and monitoring. This Special Issue collects seven research papers about several innovative aspects of the multi-faceted topic of wind turbine power optimization technology. The seven research papers deal respectively with the aerodynamic optimization of wind turbine blades through Gurney flaps; optimization of blade design for large offshore wind turbines; control design optimization of large wind turbines through the analysis of the competing objectives of energy yield maximization and fatigue loads minimization; design optimization of a tension leg platform for floating wind turbines; innovative methods for the assessment of wind turbine optimization technologies operating on site; optimization of multiple wake interactions modeling through the introduction of a mixing coefficient in the energy balance method; and optimization of the dynamic stall control of vertical-axis wind turbines through plasma actuators. This Special Issue presents remarkable research activities in the timely subject of wind turbine power optimization technology, covering various aspects. The collection is believed to be beneficial to readers and contribute to the wind power industry.


Book
Plasma Catalysis
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC


Book
Plasma Catalysis
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC


Book
Plasma Catalysis
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC

Keywords

in plasma-catalysis --- gas composition --- radiofrequency plasma --- calcium carbonate decomposition --- phenanthrene --- methane reforming --- dry reforming of methane --- NH3 decomposition --- dielectric barrier discharge --- gas temperature --- relative humidity --- CO selectivity --- isotope labelling --- nanocatalyst --- packed-bed dielectric barrier discharge --- Ga–In alloys --- mineralization --- rotating gliding arc plasma --- dielectric barrier discharge (DBD) --- catalyst --- plasmas-catalysis --- H2S oxidation --- post plasma-catalysis --- naphthalene --- VOC abatement --- nonstoichiometry --- zeolites --- H2 generation --- tar destruction --- adsorption-plasma catalysis --- NOx conversion --- catalyst preparation --- CeO2 --- nonequilibrium plasma --- non-thermal plasmas --- mode transition --- bimetal --- DBD plasma --- surface filament --- self-cooling --- indium --- plasma catalysis --- gallium --- perovskite catalysts --- ammonia synthesis --- packing materials --- air pollution --- toluene --- particle-in- cell/Monte Carlo collision method --- CO2 decomposition --- Manganese --- in plasma-catalysis --- gas composition --- radiofrequency plasma --- calcium carbonate decomposition --- phenanthrene --- methane reforming --- dry reforming of methane --- NH3 decomposition --- dielectric barrier discharge --- gas temperature --- relative humidity --- CO selectivity --- isotope labelling --- nanocatalyst --- packed-bed dielectric barrier discharge --- Ga–In alloys --- mineralization --- rotating gliding arc plasma --- dielectric barrier discharge (DBD) --- catalyst --- plasmas-catalysis --- H2S oxidation --- post plasma-catalysis --- naphthalene --- VOC abatement --- nonstoichiometry --- zeolites --- H2 generation --- tar destruction --- adsorption-plasma catalysis --- NOx conversion --- catalyst preparation --- CeO2 --- nonequilibrium plasma --- non-thermal plasmas --- mode transition --- bimetal --- DBD plasma --- surface filament --- self-cooling --- indium --- plasma catalysis --- gallium --- perovskite catalysts --- ammonia synthesis --- packing materials --- air pollution --- toluene --- particle-in- cell/Monte Carlo collision method --- CO2 decomposition --- Manganese


Book
Frontiers in Atmospheric Pressure Plasma Technology
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Atmospheric pressure plasma discharges have grown rapidly in importance in recent decades, due to the ease in handling and operation, plus their eco-friendly applications, for agriculture, food, medicine, materials and even the automotive and aerospace industries. In this context, the need for a collection of results based on plasma technologies is justified. Moreover, at the international level, the increased number of projects that translated to publications and patents in the multidisciplinary field of plasma-based technology gives researchers the opportunity to challenge their knowledge and contribute to a new era of green services and products that society demands. Therefore, this book, based on the Special Issue of “Frontiers in Atmospheric Pressure Plasma Technology” in the “Applied Physics” section of the journal Applied Sciences, provides results on some plasma-based methods and technologies for novel and possible future applications of plasmas in life sciences, biomedicine, agriculture, and the automotive industry.This book, entitled “Frontiers in Atmospheric Pressure Plasma Technology”, consists of 8 research articles, 2 review articles and 1 editorial. We know that we are only managing to address a small part of what plasma discharge can be used for, but we hope that the readers will enjoy this book and, therefore, be inspired with new ideas for future research in the field of plasma.

Keywords

Technology: general issues --- cold atmospheric pressure plasma --- antimicrobial agent --- plasma medicine --- dentistry --- atmospheric pressure plasma jet (APPJ) --- optical emission spectroscopy (OES) --- plasma-surface interactions --- local surface modification --- polymers --- functionalization --- atmospheric pressure plasma --- transdermal permeability --- transdermal delivery --- nitric oxide --- wounds --- biofilm --- plasma jet --- DBD plasma --- plasma jets --- plasma properties --- reactive species --- RONS --- non-thermal plasma --- transient spark --- electrospray --- plasma-activated water --- nitrous acid --- nitrites --- atmospheric pressure plasma jet --- plasma-wine making --- plasma treatment --- UV-Vis spectroscopy --- ATR-FTIR spectroscopy --- bio-medicine application --- cold gas-discharge plasma --- digital holography --- digital holographic interferometry --- plasma diagnostics --- CAP --- electric diagnosis --- E-field measurements --- vacuum-ultraviolet spectroscopy --- patient leakage current --- power measurement --- voltage-charge plot --- OES --- bio-medical plasma applications --- surface-wave-sustained discharge --- microwave discharge --- cold atmospheric plasma --- microwave plasma torch --- cold atmospheric pressure plasma --- antimicrobial agent --- plasma medicine --- dentistry --- atmospheric pressure plasma jet (APPJ) --- optical emission spectroscopy (OES) --- plasma-surface interactions --- local surface modification --- polymers --- functionalization --- atmospheric pressure plasma --- transdermal permeability --- transdermal delivery --- nitric oxide --- wounds --- biofilm --- plasma jet --- DBD plasma --- plasma jets --- plasma properties --- reactive species --- RONS --- non-thermal plasma --- transient spark --- electrospray --- plasma-activated water --- nitrous acid --- nitrites --- atmospheric pressure plasma jet --- plasma-wine making --- plasma treatment --- UV-Vis spectroscopy --- ATR-FTIR spectroscopy --- bio-medicine application --- cold gas-discharge plasma --- digital holography --- digital holographic interferometry --- plasma diagnostics --- CAP --- electric diagnosis --- E-field measurements --- vacuum-ultraviolet spectroscopy --- patient leakage current --- power measurement --- voltage-charge plot --- OES --- bio-medical plasma applications --- surface-wave-sustained discharge --- microwave discharge --- cold atmospheric plasma --- microwave plasma torch


Book
Frontiers in Atmospheric Pressure Plasma Technology
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Atmospheric pressure plasma discharges have grown rapidly in importance in recent decades, due to the ease in handling and operation, plus their eco-friendly applications, for agriculture, food, medicine, materials and even the automotive and aerospace industries. In this context, the need for a collection of results based on plasma technologies is justified. Moreover, at the international level, the increased number of projects that translated to publications and patents in the multidisciplinary field of plasma-based technology gives researchers the opportunity to challenge their knowledge and contribute to a new era of green services and products that society demands. Therefore, this book, based on the Special Issue of “Frontiers in Atmospheric Pressure Plasma Technology” in the “Applied Physics” section of the journal Applied Sciences, provides results on some plasma-based methods and technologies for novel and possible future applications of plasmas in life sciences, biomedicine, agriculture, and the automotive industry.This book, entitled “Frontiers in Atmospheric Pressure Plasma Technology”, consists of 8 research articles, 2 review articles and 1 editorial. We know that we are only managing to address a small part of what plasma discharge can be used for, but we hope that the readers will enjoy this book and, therefore, be inspired with new ideas for future research in the field of plasma.


Book
Frontiers in Atmospheric Pressure Plasma Technology
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Atmospheric pressure plasma discharges have grown rapidly in importance in recent decades, due to the ease in handling and operation, plus their eco-friendly applications, for agriculture, food, medicine, materials and even the automotive and aerospace industries. In this context, the need for a collection of results based on plasma technologies is justified. Moreover, at the international level, the increased number of projects that translated to publications and patents in the multidisciplinary field of plasma-based technology gives researchers the opportunity to challenge their knowledge and contribute to a new era of green services and products that society demands. Therefore, this book, based on the Special Issue of “Frontiers in Atmospheric Pressure Plasma Technology” in the “Applied Physics” section of the journal Applied Sciences, provides results on some plasma-based methods and technologies for novel and possible future applications of plasmas in life sciences, biomedicine, agriculture, and the automotive industry.This book, entitled “Frontiers in Atmospheric Pressure Plasma Technology”, consists of 8 research articles, 2 review articles and 1 editorial. We know that we are only managing to address a small part of what plasma discharge can be used for, but we hope that the readers will enjoy this book and, therefore, be inspired with new ideas for future research in the field of plasma.

Listing 1 - 7 of 7
Sort by