Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Poly(ethylene oxide) (PEO) is the more promising material for lithium-ion conducting solid polymer electrolyte. However, linear PEO solid polymer electrolytes (SPE)s have insufficient ionic conductivity and low lithium transference number. The incorporation of carbonate groups, as polar units, has been evaluated to improve the dissolution of the salt and reduce the tendency for ion aggregate formation. In this research work, we propose an original method for the synthesis of new CO2 sourced poly(PEG oxo carbonate), poly(cyclic carbonate-thioether) and their corresponding copolymer with different (oxo-carbonate/cyclic carbonate-thioether) ratios. The copolymerization has been performed by the polyaddition of bis(αCC)s; PEG 4000, as diol; and 2,2′-(Ethylenedioxy)diethanethiol, as dithiol, in DMF at room temperature in presence of DBU. As a result, copolymers with high molecular weight (20,980 g mol-1 to 90,400 g mol-1) and stable to temperatures up to 200 °C, were obtained. These polymers show low glass transition temperature (Tg = -48 °C) and semi crystalline phase; but the crystallinity domains are diminished by the increasing proportion of cyclic carbonate thioether in the copolymers. These decrease on crystallinity is evident on the detrimental effect on the mechanical properties were the Young Modulus decreases from 135.7 MPa to 41.9 MPa. The mixture of copolymers with 30 wt% of bis(trifluoromethylsulfonyl)amine lithium salt (LiTFSi) completely suppresses the crystallinity on the poly(PEG-oxo-carbonate-co-cyclic carbonate-thioether)s. FTIR spectra revealed the preference of coordination of the Li+ with the cyclic carbonate group rather than the linear carbonate group.
Choose an application
Nowadays, polyurethanes are produced thanks to the reaction between diol and diisocyanate species. Diisocyanate usage beeing subject to restrictions under REACH regulations due to its toxicity, many efforts are devoted to the substitution of diisocyanates for the synthesis of polyurethane. The most elegant pathway for the fabrication of isocyanate-free polyurethane is based on the reaction between CO2 and epoxide, leading to 5-membered cyclic carbonate (5CC) monomer. The 5CC reaction with diamine comonomer allows the formation of poly(beta-hydroxyurethane) polymer (PHU). However, the challenge lies in mimicking the CO2 generating isocyanate-water reaction of conventional PUs for PHU foaming. Herein, we designed a self-blowing technique thanks to in-situ generation of CO2 based on 5-membered CC reactivity. The study of model reactions confirmed the CO2 release thanks to 5CC reactivity in conventional experimental conditions. The study was then extended to linear polymer synthesis as a preliminary step to foam formulation. Basic formulation and foaming process screening were then conducted before more rigourous PHU foam samples characterisation. The effect of conventional PU additives on foam characteristics was also studied. RAMAN spectroscopy, TGA, DSC, SEM and DMA experiments were performed to state on properties of prepared NIPU foams.
NIPU --- PHU --- Non-isocyanate polyurethane --- NIPU foams --- CO2 --- Cyclic carbonate --- Self-blowing foams --- Physique, chimie, mathématiques & sciences de la terre > Chimie
Choose an application
Polymerized nanoparticles and nanofibers can be prepared using various processes, such as chemical synthesis, the electrochemical method, electrospinning, ultrasonic irradiation, hard and soft templates, seeding polymerization, interfacial polymerization, and plasma polymerization. Among these processes, plasma polymerization and aerosol-through-plasma (A-T-P) processes have versatile advantages, especially due to them being “dry", for the deposition of plasma polymer films and carbon-based materials with functional properties suitable for a wide range of applications, such as electronic and optical devices, protective coatings, and biomedical materials. Furthermore, it is well known that plasma polymers are highly cross-linked, pinhole free, branched, insoluble, and adhere well to most substrates. In order to synthesize the polymer films using the plasma processes, therefore, it is very important to increase the density and electron temperature of plasma during plasma polymerization.
Technology: general issues --- Chemical engineering --- polytetrafluoroethylene --- fluorine depletion --- hydrogen plasma --- VUV radiation --- surface modification --- hydrophilic --- polyamide --- gaseous plasma --- water contact angle --- XPS --- polyamide membranes --- magnetron sputtering --- TiO2 + AgO coatings --- low-pressure plasma --- plasma treatment --- polyaniline (PANI) --- conductive polymer --- plasma polymerization --- aniline --- atmospheric pressure plasma reactor (AP plasma reactor) --- in-situ iodine (I2) doping --- atmospheric pressure plasma --- filler --- polylactic acid --- polymer composite --- polyethylene --- corona discharge --- polyethylene glycol --- adhesion --- polymer --- biomedical applications --- additive manufacturing --- toluidine blue method --- enzymatic degradation --- microwave discharge --- discharges in liquids --- microwave discharge in liquid hydrocarbons --- methods of generation --- plasma properties --- gas products --- solid products --- plasma diagnostics --- plasma modeling --- room temperature growth --- porous polythiophene --- conducting polymer --- NO2 --- gas sensors --- ion beam sputtering --- continuum equation --- plasma --- sublimation --- PA6.6 --- cold plasma --- electrical discharges --- voltage multiplier --- polymers --- oleofobization --- paper --- cellulose --- HMDSO --- atmospheric-pressure plasma --- solution plasma --- polymer films --- nanoparticles --- surface wettability --- graphene oxide --- cyclic olefin copolymer --- GO reduction --- titanium (Ti) alloys --- low-temperature plasma polymerization --- plasma-fluorocarbon-polymer --- anti-adhesive surface --- inflammatory/immunological response --- intramuscularly implantation --- atmospheric pressure plasma jet --- dielectric barrier discharge --- piezoelectric direct discharge --- surface free energy --- test ink --- surface activation --- allyl-substituted cyclic carbonate --- free-radical polymerization --- plasma process --- plasma polymerisation --- plasma deposition --- poly(lactic acid) --- PLA --- ascorbic acid --- fumaric acid --- grafting --- wettability --- BOPP foil --- DCSBD --- VDBD --- ageing --- surface functionalization --- atmospheric pressure plasmas --- glow-like discharge --- single pin electrode --- PANI thin film --- polytetrafluoroethylene --- fluorine depletion --- hydrogen plasma --- VUV radiation --- surface modification --- hydrophilic --- polyamide --- gaseous plasma --- water contact angle --- XPS --- polyamide membranes --- magnetron sputtering --- TiO2 + AgO coatings --- low-pressure plasma --- plasma treatment --- polyaniline (PANI) --- conductive polymer --- plasma polymerization --- aniline --- atmospheric pressure plasma reactor (AP plasma reactor) --- in-situ iodine (I2) doping --- atmospheric pressure plasma --- filler --- polylactic acid --- polymer composite --- polyethylene --- corona discharge --- polyethylene glycol --- adhesion --- polymer --- biomedical applications --- additive manufacturing --- toluidine blue method --- enzymatic degradation --- microwave discharge --- discharges in liquids --- microwave discharge in liquid hydrocarbons --- methods of generation --- plasma properties --- gas products --- solid products --- plasma diagnostics --- plasma modeling --- room temperature growth --- porous polythiophene --- conducting polymer --- NO2 --- gas sensors --- ion beam sputtering --- continuum equation --- plasma --- sublimation --- PA6.6 --- cold plasma --- electrical discharges --- voltage multiplier --- polymers --- oleofobization --- paper --- cellulose --- HMDSO --- atmospheric-pressure plasma --- solution plasma --- polymer films --- nanoparticles --- surface wettability --- graphene oxide --- cyclic olefin copolymer --- GO reduction --- titanium (Ti) alloys --- low-temperature plasma polymerization --- plasma-fluorocarbon-polymer --- anti-adhesive surface --- inflammatory/immunological response --- intramuscularly implantation --- atmospheric pressure plasma jet --- dielectric barrier discharge --- piezoelectric direct discharge --- surface free energy --- test ink --- surface activation --- allyl-substituted cyclic carbonate --- free-radical polymerization --- plasma process --- plasma polymerisation --- plasma deposition --- poly(lactic acid) --- PLA --- ascorbic acid --- fumaric acid --- grafting --- wettability --- BOPP foil --- DCSBD --- VDBD --- ageing --- surface functionalization --- atmospheric pressure plasmas --- glow-like discharge --- single pin electrode --- PANI thin film
Choose an application
Polymerized nanoparticles and nanofibers can be prepared using various processes, such as chemical synthesis, the electrochemical method, electrospinning, ultrasonic irradiation, hard and soft templates, seeding polymerization, interfacial polymerization, and plasma polymerization. Among these processes, plasma polymerization and aerosol-through-plasma (A-T-P) processes have versatile advantages, especially due to them being “dry", for the deposition of plasma polymer films and carbon-based materials with functional properties suitable for a wide range of applications, such as electronic and optical devices, protective coatings, and biomedical materials. Furthermore, it is well known that plasma polymers are highly cross-linked, pinhole free, branched, insoluble, and adhere well to most substrates. In order to synthesize the polymer films using the plasma processes, therefore, it is very important to increase the density and electron temperature of plasma during plasma polymerization.
Technology: general issues --- Chemical engineering --- polytetrafluoroethylene --- fluorine depletion --- hydrogen plasma --- VUV radiation --- surface modification --- hydrophilic --- polyamide --- gaseous plasma --- water contact angle --- XPS --- polyamide membranes --- magnetron sputtering --- TiO2 + AgO coatings --- low-pressure plasma --- plasma treatment --- polyaniline (PANI) --- conductive polymer --- plasma polymerization --- aniline --- atmospheric pressure plasma reactor (AP plasma reactor) --- in-situ iodine (I2) doping --- atmospheric pressure plasma --- filler --- polylactic acid --- polymer composite --- polyethylene --- corona discharge --- polyethylene glycol --- adhesion --- polymer --- biomedical applications --- additive manufacturing --- toluidine blue method --- enzymatic degradation --- microwave discharge --- discharges in liquids --- microwave discharge in liquid hydrocarbons --- methods of generation --- plasma properties --- gas products --- solid products --- plasma diagnostics --- plasma modeling --- room temperature growth --- porous polythiophene --- conducting polymer --- NO2 --- gas sensors --- ion beam sputtering --- continuum equation --- plasma --- sublimation --- PA6.6 --- cold plasma --- electrical discharges --- voltage multiplier --- polymers --- oleofobization --- paper --- cellulose --- HMDSO --- atmospheric-pressure plasma --- solution plasma --- polymer films --- nanoparticles --- surface wettability --- graphene oxide --- cyclic olefin copolymer --- GO reduction --- titanium (Ti) alloys --- low-temperature plasma polymerization --- plasma-fluorocarbon-polymer --- anti-adhesive surface --- inflammatory/immunological response --- intramuscularly implantation --- atmospheric pressure plasma jet --- dielectric barrier discharge --- piezoelectric direct discharge --- surface free energy --- test ink --- surface activation --- allyl-substituted cyclic carbonate --- free-radical polymerization --- plasma process --- plasma polymerisation --- plasma deposition --- poly(lactic acid) --- PLA --- ascorbic acid --- fumaric acid --- grafting --- wettability --- BOPP foil --- DCSBD --- VDBD --- ageing --- surface functionalization --- atmospheric pressure plasmas --- glow-like discharge --- single pin electrode --- PANI thin film
Choose an application
Polymerized nanoparticles and nanofibers can be prepared using various processes, such as chemical synthesis, the electrochemical method, electrospinning, ultrasonic irradiation, hard and soft templates, seeding polymerization, interfacial polymerization, and plasma polymerization. Among these processes, plasma polymerization and aerosol-through-plasma (A-T-P) processes have versatile advantages, especially due to them being “dry", for the deposition of plasma polymer films and carbon-based materials with functional properties suitable for a wide range of applications, such as electronic and optical devices, protective coatings, and biomedical materials. Furthermore, it is well known that plasma polymers are highly cross-linked, pinhole free, branched, insoluble, and adhere well to most substrates. In order to synthesize the polymer films using the plasma processes, therefore, it is very important to increase the density and electron temperature of plasma during plasma polymerization.
polytetrafluoroethylene --- fluorine depletion --- hydrogen plasma --- VUV radiation --- surface modification --- hydrophilic --- polyamide --- gaseous plasma --- water contact angle --- XPS --- polyamide membranes --- magnetron sputtering --- TiO2 + AgO coatings --- low-pressure plasma --- plasma treatment --- polyaniline (PANI) --- conductive polymer --- plasma polymerization --- aniline --- atmospheric pressure plasma reactor (AP plasma reactor) --- in-situ iodine (I2) doping --- atmospheric pressure plasma --- filler --- polylactic acid --- polymer composite --- polyethylene --- corona discharge --- polyethylene glycol --- adhesion --- polymer --- biomedical applications --- additive manufacturing --- toluidine blue method --- enzymatic degradation --- microwave discharge --- discharges in liquids --- microwave discharge in liquid hydrocarbons --- methods of generation --- plasma properties --- gas products --- solid products --- plasma diagnostics --- plasma modeling --- room temperature growth --- porous polythiophene --- conducting polymer --- NO2 --- gas sensors --- ion beam sputtering --- continuum equation --- plasma --- sublimation --- PA6.6 --- cold plasma --- electrical discharges --- voltage multiplier --- polymers --- oleofobization --- paper --- cellulose --- HMDSO --- atmospheric-pressure plasma --- solution plasma --- polymer films --- nanoparticles --- surface wettability --- graphene oxide --- cyclic olefin copolymer --- GO reduction --- titanium (Ti) alloys --- low-temperature plasma polymerization --- plasma-fluorocarbon-polymer --- anti-adhesive surface --- inflammatory/immunological response --- intramuscularly implantation --- atmospheric pressure plasma jet --- dielectric barrier discharge --- piezoelectric direct discharge --- surface free energy --- test ink --- surface activation --- allyl-substituted cyclic carbonate --- free-radical polymerization --- plasma process --- plasma polymerisation --- plasma deposition --- poly(lactic acid) --- PLA --- ascorbic acid --- fumaric acid --- grafting --- wettability --- BOPP foil --- DCSBD --- VDBD --- ageing --- surface functionalization --- atmospheric pressure plasmas --- glow-like discharge --- single pin electrode --- PANI thin film
Listing 1 - 5 of 5 |
Sort by
|