Narrow your search

Library

KU Leuven (10)

FARO (7)

LUCA School of Arts (7)

Odisee (7)

Thomas More Kempen (7)

Thomas More Mechelen (7)

UCLL (7)

ULiège (7)

VIVES (7)

Vlaams Parlement (7)

More...

Resource type

book (24)


Language

English (22)

Chinese (2)


Year
From To Submit

2021 (12)

2020 (8)

2013 (1)

2005 (1)

1996 (1)

More...
Listing 1 - 10 of 24 << page
of 3
>>
Sort by

Book
Zi ci xie du nian tan
Author:
ISBN: 9789866308109 9866308103 Year: 2013 Publisher: Taibei : Bo hai tang wen hua shi ye you xian gong si,

Loading...
Export citation

Choose an application

Bookmark

Abstract

A Vietnamese royal exile in Japan : prince Cuong De (1882-1951).
Author:
ISBN: 0415297168 Year: 2005 Publisher: Abingdon Routledge

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Princes --- Cường Để, --- Exile --- Vietnam --- History


Book
贾谊
Author:
ISBN: 7305012092 Year: 1996 Publisher: 南京 南京大学出版社

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Advanced Catalysis in Hydrogen Production from Formic Acid and Methanol
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue is related to studies of the hydrogen production from formic acid decomposition. It is based on five research papers and two reviews. The reviews discuss the liquid phase formic acid decomposition over bimetallic (PdAg), molecular (Ru, Ir, Fe, Co), and heterogenized molecular catalysts. The gas-phase reaction is studied over highly dispersed Pd, Pt, Au, Cu, and Ni supported catalysts. It is shown that the nature of the catalyst’s support plays an important role for the reaction. Thus, N-doping of the carbon support provides a significant promotional effect. One of the reasons for the high activity of the N-doped catalysts is the formation of single-atom active sites stabilized by pyridinic N species present in the support. It is demonstrated that carbon materials can be N-doped in different ways. It can be performed either directly from N-containing compounds during the carbon synthesis or by a post-synthetic deposition of N-containing compounds on the carbon support with known properties. The Issue could be useful for specialists in catalysis and nanomaterials as well as for graduate students studying chemistry and chemical engineering. The reported results can be applied for development of catalysts for the hydrogen production from different liquid organic hydrogen carriers.

Keywords

Technology: general issues --- formic acid decomposition --- hydrogen production --- CuO-CeO2/γ-Al2O3 --- multifuel processor --- copper catalyst --- oxygenates --- fuel cell --- Pd/C --- melamine --- g-C3N4 --- bipyridine --- phenanthroline --- N-doped carbon --- hydrogen --- formic acid --- platinum --- nitrogen doped --- carbon nanotubes --- carbon nanofibers --- heterogeneous catalysts --- bimetallic nanoparticles --- PdAg --- AgPd --- alloy --- nickel catalyst --- porous carbon support --- nitrogen doping --- hydrogen energetics --- hydrogen carrier --- formic acid dehydrogenation --- supported gold catalysts --- formic --- formate --- hybrid --- functionalization --- co-catalyst --- additive --- amine --- molecular catalyst --- nanocatalyst --- nano co-catalyst --- formic acid decomposition --- hydrogen production --- CuO-CeO2/γ-Al2O3 --- multifuel processor --- copper catalyst --- oxygenates --- fuel cell --- Pd/C --- melamine --- g-C3N4 --- bipyridine --- phenanthroline --- N-doped carbon --- hydrogen --- formic acid --- platinum --- nitrogen doped --- carbon nanotubes --- carbon nanofibers --- heterogeneous catalysts --- bimetallic nanoparticles --- PdAg --- AgPd --- alloy --- nickel catalyst --- porous carbon support --- nitrogen doping --- hydrogen energetics --- hydrogen carrier --- formic acid dehydrogenation --- supported gold catalysts --- formic --- formate --- hybrid --- functionalization --- co-catalyst --- additive --- amine --- molecular catalyst --- nanocatalyst --- nano co-catalyst


Book
Advanced Catalysis in Hydrogen Production from Formic Acid and Methanol
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue is related to studies of the hydrogen production from formic acid decomposition. It is based on five research papers and two reviews. The reviews discuss the liquid phase formic acid decomposition over bimetallic (PdAg), molecular (Ru, Ir, Fe, Co), and heterogenized molecular catalysts. The gas-phase reaction is studied over highly dispersed Pd, Pt, Au, Cu, and Ni supported catalysts. It is shown that the nature of the catalyst’s support plays an important role for the reaction. Thus, N-doping of the carbon support provides a significant promotional effect. One of the reasons for the high activity of the N-doped catalysts is the formation of single-atom active sites stabilized by pyridinic N species present in the support. It is demonstrated that carbon materials can be N-doped in different ways. It can be performed either directly from N-containing compounds during the carbon synthesis or by a post-synthetic deposition of N-containing compounds on the carbon support with known properties. The Issue could be useful for specialists in catalysis and nanomaterials as well as for graduate students studying chemistry and chemical engineering. The reported results can be applied for development of catalysts for the hydrogen production from different liquid organic hydrogen carriers.


Book
Advanced Catalysis in Hydrogen Production from Formic Acid and Methanol
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue is related to studies of the hydrogen production from formic acid decomposition. It is based on five research papers and two reviews. The reviews discuss the liquid phase formic acid decomposition over bimetallic (PdAg), molecular (Ru, Ir, Fe, Co), and heterogenized molecular catalysts. The gas-phase reaction is studied over highly dispersed Pd, Pt, Au, Cu, and Ni supported catalysts. It is shown that the nature of the catalyst’s support plays an important role for the reaction. Thus, N-doping of the carbon support provides a significant promotional effect. One of the reasons for the high activity of the N-doped catalysts is the formation of single-atom active sites stabilized by pyridinic N species present in the support. It is demonstrated that carbon materials can be N-doped in different ways. It can be performed either directly from N-containing compounds during the carbon synthesis or by a post-synthetic deposition of N-containing compounds on the carbon support with known properties. The Issue could be useful for specialists in catalysis and nanomaterials as well as for graduate students studying chemistry and chemical engineering. The reported results can be applied for development of catalysts for the hydrogen production from different liquid organic hydrogen carriers.


Book
Hydrogen Production Technologies
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Hydrogen has been an important feedstock for various industries, and its global market is already valued at hundreds of billions of dollars per year. It is also playing additional roles as a clean alternative energy carrier for power generation and as a crucial feedstock in the bioeconomy. This Special Issue “Hydrogen Production Technologies” highlights different thermochemical, electrochemical, and biological technologies such as high- and low-temperature electrolyzers, microchannel reactors, sorption-enhanced reactors, multi-tubular solar reactors, and anaerobic digestors. It also covers other aspects ranging from reactor design, hydrogen storage, and process analysis of different alternatives.


Book
Synthesis, Chracterization and Applications of Coated Composite Materials for Energy Applications
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The formulation of coated composite materials is an important field of research around the world today. Coated composite materials include inhomogeneous and anisotropic materials. These materials are formulated by an amalgamate minimum of two or more materials that accommodate different properties. These materials have a vast field of appealing applications that encourage scientists to work on them. Due to their unique properties, such as their strength, liability, swiftness, and low cost, they are used as promising candidates for reliable applications in various fields, such as biomedical, engineering, energy devices, wastewater treatment, and agriculture. Different types of composite materials have had a noticeable impact in these fields already, such as glass, plastic, and, most promisingly, metal oxide nanoparticles.


Book
Nanoenergetic Materials : Preparation, Properties, and Applications
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This highly informative and carefully presented book discusses the preparation, processing, characterization and applications of different types of nanoenergetic materials, as well as the tailoring of their properties. It gives an overview of recent advances of outstanding classes of energetic materials applied in the fields of physics, chemistry, aerospace, defense, and materials science, among others. The content of this book is relevant to researchers in academia and industry professionals working on the development of advanced nanoenergetic materials and their applications.

Keywords

History of engineering & technology --- solid propellants --- condensed products --- catalytic combustion --- compositions --- rocket motor --- thermolysis --- energetic materials --- GO-based catalysts --- quantitative analyses --- decomposition mechanisms --- electrospinning --- NC/GAP/nano-LLM-105 --- energetic performance --- sensitivity --- nitrocellulose --- supercritical antisolvent process --- nanoparticles --- combustion --- nano AP --- nano AN --- liquid nitrogen --- freeze drying --- nanoenergetic material --- compatibility --- nonisothermal reaction kinetics --- thermal safety --- catalytic action --- nano-Al/MoO3 MIC --- stable suspension --- electrophoretic deposition --- kinetics --- micro initiator --- carbon mesosphere --- Fe2O3 --- supported nanoparticles --- thermal decomposition --- composite energetic materials --- nano-sized particles --- Al-based --- morphology performance --- hazardous properties --- ignition --- metal --- combustion mode --- heat transfer --- free-molecular --- burning time --- nanothermite --- pyroMEMS --- nanoenergetics --- reactive thin film --- Al --- CuO --- aging --- initiation --- HTPB --- aluminum nanopowders --- burning rate --- coated aluminum --- reactive materials --- nanocomposite --- metal combustion --- thermal analysis --- solid propellants --- condensed products --- catalytic combustion --- compositions --- rocket motor --- thermolysis --- energetic materials --- GO-based catalysts --- quantitative analyses --- decomposition mechanisms --- electrospinning --- NC/GAP/nano-LLM-105 --- energetic performance --- sensitivity --- nitrocellulose --- supercritical antisolvent process --- nanoparticles --- combustion --- nano AP --- nano AN --- liquid nitrogen --- freeze drying --- nanoenergetic material --- compatibility --- nonisothermal reaction kinetics --- thermal safety --- catalytic action --- nano-Al/MoO3 MIC --- stable suspension --- electrophoretic deposition --- kinetics --- micro initiator --- carbon mesosphere --- Fe2O3 --- supported nanoparticles --- thermal decomposition --- composite energetic materials --- nano-sized particles --- Al-based --- morphology performance --- hazardous properties --- ignition --- metal --- combustion mode --- heat transfer --- free-molecular --- burning time --- nanothermite --- pyroMEMS --- nanoenergetics --- reactive thin film --- Al --- CuO --- aging --- initiation --- HTPB --- aluminum nanopowders --- burning rate --- coated aluminum --- reactive materials --- nanocomposite --- metal combustion --- thermal analysis


Book
Hydrogen Production Technologies
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Hydrogen has been an important feedstock for various industries, and its global market is already valued at hundreds of billions of dollars per year. It is also playing additional roles as a clean alternative energy carrier for power generation and as a crucial feedstock in the bioeconomy. This Special Issue “Hydrogen Production Technologies” highlights different thermochemical, electrochemical, and biological technologies such as high- and low-temperature electrolyzers, microchannel reactors, sorption-enhanced reactors, multi-tubular solar reactors, and anaerobic digestors. It also covers other aspects ranging from reactor design, hydrogen storage, and process analysis of different alternatives.

Keywords

History of engineering & technology --- algae --- anaerobic digestion --- biogas --- biohydrogen --- energy assessment --- kinetic models --- microwave --- nanoparticles --- pretreatment --- solar reactor --- hydrogen production --- solar receiver --- thermal energy --- computational fluid dynamics --- CFD --- model --- titanium nitride --- stainless steel --- alkaline electrolysis --- energy storage --- hydrogen energy --- solid-state hydrogen storage --- unitized regenerative fuel cell --- multi- walled carbon nanotube --- proton battery --- pyrolytic oil hydro-processing --- process modeling --- syngas --- gasification --- sorption-enhanced water-gas shift --- multi-functional material --- hydrogen production processes --- economic viability --- environmental efficiency --- sustainable energy --- multi-criteria analysis --- thermochemical cycles --- micro-channel reactor --- ceria --- ceria-zirconia --- water splitting --- oxygen carrier --- solid oxide electrolysis cells --- sintering additive --- CuO --- steam electrolysis --- compact reactor --- ethanol steam reforming --- water gas shift --- algae --- anaerobic digestion --- biogas --- biohydrogen --- energy assessment --- kinetic models --- microwave --- nanoparticles --- pretreatment --- solar reactor --- hydrogen production --- solar receiver --- thermal energy --- computational fluid dynamics --- CFD --- model --- titanium nitride --- stainless steel --- alkaline electrolysis --- energy storage --- hydrogen energy --- solid-state hydrogen storage --- unitized regenerative fuel cell --- multi- walled carbon nanotube --- proton battery --- pyrolytic oil hydro-processing --- process modeling --- syngas --- gasification --- sorption-enhanced water-gas shift --- multi-functional material --- hydrogen production processes --- economic viability --- environmental efficiency --- sustainable energy --- multi-criteria analysis --- thermochemical cycles --- micro-channel reactor --- ceria --- ceria-zirconia --- water splitting --- oxygen carrier --- solid oxide electrolysis cells --- sintering additive --- CuO --- steam electrolysis --- compact reactor --- ethanol steam reforming --- water gas shift

Listing 1 - 10 of 24 << page
of 3
>>
Sort by