Narrow your search

Library

ULiège (4)

ULB (3)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

UGent (2)

VIVES (2)

VUB (2)

More...

Resource type

book (9)


Language

English (9)


Year
From To Submit

2021 (3)

2013 (1)

1974 (1)

1972 (1)

1969 (2)

More...
Listing 1 - 9 of 9
Sort by

Book
Effects of intermediate strong coupling and vibrational relaxation in the fluorescence of pyrene vapour
Author:
Year: 1974 Publisher: [Amsterdam] : [s.n.],

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Nonaqueous chemistry.
Author:
ISBN: 0387056637 Year: 1972 Volume: 27 Publisher: Berlin, New York, : Springer,


Book
Nuclear quadrupole coupling constants
Author:
Year: 1969 Publisher: London New York, NY : Academic Press,


Book
P31 nuclear magnetic resonance
Authors: --- ---
Year: 1967 Publisher: New York (N.Y.) : Interscience,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Strong-coupling theory of high-temperature superconductivity
Author:
ISBN: 9781139088176 9781107018556 9781107341586 1107341582 1139088173 9781299634817 1299634818 9781107357457 1107357454 9781107347830 1107347831 1107018552 9781107345331 1107345332 1107235391 1107344085 1107348935 9781107235397 9781107344082 9781107348936 Year: 2013 Publisher: Cambridge Cambridge University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

High-temperature superconductivity has transformed the landscape of solid state science, leading to the discovery of new classes of materials, states of matter, and concepts. However, despite being over a quarter of a century since its discovery, there is still no single accepted theory to explain its origin. This book presents one approach, the strong-coupling or bipolaron theory, which proposes that high-temperature superconductivity originates from competing Coulomb and electron-phonon interactions. The author provides a thorough overview of the theory, describing numerous experimental observations, and giving detailed mathematical derivations of key theoretical findings at an accessible level. Applications of the theory to existing high-temperature superconductors are discussed, as well as possibilities of liquid superconductors and higher critical temperatures. Alternative theories are also examined to provide a balanced and informative perspective. This monograph will appeal to advanced researchers and academics in the fields of condensed matter physics and quantum-field theories.


Book
Nuclear quadrupole coupling constants
Author:
Year: 1969 Publisher: London : Academic press,


Book
Intramolecular Hydrogen Bonding 2021
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book describes the results of both theoretical and experimental research on many topical issues in intramolecular hydrogen bonding. Its great advantage is that the presented research results have been obtained using many different techniques. Therefore, it is an excellent review of these methods, while showing their applicability to the current scientific issues regarding intramolecular hydrogen bonds. The experimental techniques used include X-ray diffraction, infrared and Raman spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), nuclear quadrupole resonance spectroscopy (NQR), incoherent inelastic neutron scattering (IINS), and differential scanning calorimetry (DSC). The solvatochromic and luminescent studies are also described. On the other hand, theoretical research is based on ab initio calculations and the Car–Parrinello Molecular Dynamics (CPMD). In the latter case, a description of nuclear quantum effects (NQE) is also possible. This book also demonstrates the use of theoretical methods such as Quantum Theory of Atoms in Molecules (QTAIM), Interacting Quantum Atoms (IQA), Natural Bond Orbital (NBO), Non-Covalent Interactions (NCI) index, Molecular Tailoring Approach (MTA), and many others.

Keywords

Research & information: general --- intramolecular interaction --- interaction energy --- hydrogen bond --- intramolecular hydrogen bonds --- deuterium isotope effects on chemical shifts --- isotope ratios --- hydrogen bond energies --- intramolecular hydrogen bonding --- high-accuracy extrapolation methods --- QTAIM --- non-covalent interactions --- local vibrational modes --- hydrogen bond (HB) --- intramolecular hydrogen bond (IHB) --- molecular tailoring approach (MTA) --- fragmentation methods --- bond energy estimation --- noncovalent interactions --- structures and binding energies --- charge-transfer interactions --- spin–spin coupling constants --- polymorphism --- isomerization --- phase transition --- nitro group --- matrix isolation --- IINS --- FT-IR --- Raman --- X-ray --- NQR --- DSC --- DFT --- Schiff base --- N-salicylidene aniline derivative --- photophysical properties --- solvatochromism --- Hirshfeld surface analysis --- amino-alcohols --- α-substitution --- beryllium bonds --- calculated infrared spectra --- interacting quantum atoms --- resonance-assisted hydrogen bond --- Schiff bases --- inelastic incoherent neutron scattering --- isotopic effect --- excited-state intramolecular proton transfer --- photochemistry --- photobiology --- quantum chemistry --- molecular dynamics --- ultrafast processes --- gas phase --- crystalline phase --- MP2 --- CCSD --- AIM --- SAPT --- nuclear quantum effects --- CPMD --- n/a --- spin-spin coupling constants


Book
Intramolecular Hydrogen Bonding 2021
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book describes the results of both theoretical and experimental research on many topical issues in intramolecular hydrogen bonding. Its great advantage is that the presented research results have been obtained using many different techniques. Therefore, it is an excellent review of these methods, while showing their applicability to the current scientific issues regarding intramolecular hydrogen bonds. The experimental techniques used include X-ray diffraction, infrared and Raman spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), nuclear quadrupole resonance spectroscopy (NQR), incoherent inelastic neutron scattering (IINS), and differential scanning calorimetry (DSC). The solvatochromic and luminescent studies are also described. On the other hand, theoretical research is based on ab initio calculations and the Car–Parrinello Molecular Dynamics (CPMD). In the latter case, a description of nuclear quantum effects (NQE) is also possible. This book also demonstrates the use of theoretical methods such as Quantum Theory of Atoms in Molecules (QTAIM), Interacting Quantum Atoms (IQA), Natural Bond Orbital (NBO), Non-Covalent Interactions (NCI) index, Molecular Tailoring Approach (MTA), and many others.


Book
Intramolecular Hydrogen Bonding 2021
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book describes the results of both theoretical and experimental research on many topical issues in intramolecular hydrogen bonding. Its great advantage is that the presented research results have been obtained using many different techniques. Therefore, it is an excellent review of these methods, while showing their applicability to the current scientific issues regarding intramolecular hydrogen bonds. The experimental techniques used include X-ray diffraction, infrared and Raman spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), nuclear quadrupole resonance spectroscopy (NQR), incoherent inelastic neutron scattering (IINS), and differential scanning calorimetry (DSC). The solvatochromic and luminescent studies are also described. On the other hand, theoretical research is based on ab initio calculations and the Car–Parrinello Molecular Dynamics (CPMD). In the latter case, a description of nuclear quantum effects (NQE) is also possible. This book also demonstrates the use of theoretical methods such as Quantum Theory of Atoms in Molecules (QTAIM), Interacting Quantum Atoms (IQA), Natural Bond Orbital (NBO), Non-Covalent Interactions (NCI) index, Molecular Tailoring Approach (MTA), and many others.

Keywords

Research & information: general --- intramolecular interaction --- interaction energy --- hydrogen bond --- intramolecular hydrogen bonds --- deuterium isotope effects on chemical shifts --- isotope ratios --- hydrogen bond energies --- intramolecular hydrogen bonding --- high-accuracy extrapolation methods --- QTAIM --- non-covalent interactions --- local vibrational modes --- hydrogen bond (HB) --- intramolecular hydrogen bond (IHB) --- molecular tailoring approach (MTA) --- fragmentation methods --- bond energy estimation --- noncovalent interactions --- structures and binding energies --- charge-transfer interactions --- spin-spin coupling constants --- polymorphism --- isomerization --- phase transition --- nitro group --- matrix isolation --- IINS --- FT-IR --- Raman --- X-ray --- NQR --- DSC --- DFT --- Schiff base --- N-salicylidene aniline derivative --- photophysical properties --- solvatochromism --- Hirshfeld surface analysis --- amino-alcohols --- α-substitution --- beryllium bonds --- calculated infrared spectra --- interacting quantum atoms --- resonance-assisted hydrogen bond --- Schiff bases --- inelastic incoherent neutron scattering --- isotopic effect --- excited-state intramolecular proton transfer --- photochemistry --- photobiology --- quantum chemistry --- molecular dynamics --- ultrafast processes --- gas phase --- crystalline phase --- MP2 --- CCSD --- AIM --- SAPT --- nuclear quantum effects --- CPMD --- intramolecular interaction --- interaction energy --- hydrogen bond --- intramolecular hydrogen bonds --- deuterium isotope effects on chemical shifts --- isotope ratios --- hydrogen bond energies --- intramolecular hydrogen bonding --- high-accuracy extrapolation methods --- QTAIM --- non-covalent interactions --- local vibrational modes --- hydrogen bond (HB) --- intramolecular hydrogen bond (IHB) --- molecular tailoring approach (MTA) --- fragmentation methods --- bond energy estimation --- noncovalent interactions --- structures and binding energies --- charge-transfer interactions --- spin-spin coupling constants --- polymorphism --- isomerization --- phase transition --- nitro group --- matrix isolation --- IINS --- FT-IR --- Raman --- X-ray --- NQR --- DSC --- DFT --- Schiff base --- N-salicylidene aniline derivative --- photophysical properties --- solvatochromism --- Hirshfeld surface analysis --- amino-alcohols --- α-substitution --- beryllium bonds --- calculated infrared spectra --- interacting quantum atoms --- resonance-assisted hydrogen bond --- Schiff bases --- inelastic incoherent neutron scattering --- isotopic effect --- excited-state intramolecular proton transfer --- photochemistry --- photobiology --- quantum chemistry --- molecular dynamics --- ultrafast processes --- gas phase --- crystalline phase --- MP2 --- CCSD --- AIM --- SAPT --- nuclear quantum effects --- CPMD

Listing 1 - 9 of 9
Sort by