Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Choose an application
Animal feed --- Chickens --- Diet --- Gossypol --- Cottonseed oil --- metabolism --- physiology --- toxicity
Choose an application
Gossypium --- Gossypium --- Inorganic fertilizers --- Inorganic fertilizers --- Fertilizer application --- Fertilizer application --- Efficiency --- Efficiency --- Biological production --- Biological production --- cottonseed oil --- cottonseed oil
Choose an application
Oléagineux. --- Oilseed plants. --- Cultures tropicales. --- Tropical crops. --- Huiles végétales --- Vegetable oils. --- Huile d'arachide --- Peanut oil. --- Huile de coton --- Cottonseed oil. --- Sesame oil. --- Huile de ricin --- Castor oil.
Choose an application
This work covers all aspects related to the obtainment, production, design, and processing of biopolymers obtained from natural resources. Moreover, it studies characteristics related to the improvement of their performance to increase their potential application at an industrial level, in line with the concept of a global circular economy. Thus, this work firstly classifies biopolymers obtained from natural resources (e.g., biobased building blocks and biopolymers extracted directly from plants and biomass), and then summarizes several cutting-edge research works focused on enhancing the performance of biopolymers from natural resources to extend their application in the industrial sector, and contribute to the transition to more sustainable plastics.
Technology: general issues --- History of engineering & technology --- PHBH --- almond shell flour --- mechanical properties --- thermal characterization --- WPCs --- bacterial polyesters --- poly(3-hydroxybutyrate-co-3hydroxyhexanoate)—PHBH --- poly(ε-caprolactone)—PCL --- binary blends --- improved toughness --- mechanical and thermal characterization --- Cucumis metuliferus --- extraction --- antioxidant activity --- coating --- cellulose acetate --- LDPE --- bilayer packaging --- active packaging --- poly(lactic acid) --- mechanical recycling --- yerba mate --- bionanocomposites --- polysulfide-derived polymers --- cottonseed oil --- fatty acid of cottonseed oil --- sodium soap of cottonseed oil --- PLA --- nanocomposites --- functional properties --- thymol --- migration --- films --- cutin --- cuticles --- bioplastics --- biopolymers --- solanum: CPMAS 13C NMR --- softgels --- mucilage --- in vitro digestion --- bioaccessibility --- bran content --- plasticized wheat flour --- citric acid --- biobased blends --- biopolymer --- carboxymethyl cellulose --- solid polymer electrolyte --- ionic transport --- chitosan --- potato starch --- microwave --- foam --- orthogonal experiments --- empty fruit bunch --- regenerated cellulose --- ionic liquid --- methyl methacrylate --- 3D printing --- syringe extrusion 3D printing --- hydroxypropyl methylcellulose --- orodispersible film --- phenytoin --- PA610 --- halloysite nanotubes (HNTs) --- flame retardant --- cone calorimeter --- agricultural waste --- asparagus --- CMC --- degree of substitution --- DS --- cellulose extraction --- thermoplastic starch --- dolomite --- biocomposite --- sonication --- bacterial cellulose --- nata de coco --- sodium hydroxide --- lignin --- nanoparticles --- biorefinery --- organosolv pretreatment --- polyelectrolyte multi-layers --- sodium alginate --- k-carrageenan --- cellulosic nonwoven textile --- surface functionalization --- characterization --- bio-sorption --- isotherms --- natural fibers --- soy protein --- chitin --- coir --- comfort --- functional textiles --- Circular Bioeconomy --- carbonation reaction --- selectivity optimization --- carbonated epoxidized linseed oil --- non-isocyanate polyurethane --- argan shell particles --- wood plastic composite --- polyethylene --- compatibilization --- air permeability --- fungal fibers --- hemp fibers --- microstructure --- mycocel --- softwood fibers --- virus membrane filtration --- allotropic transition --- choline chloride --- plasticizer --- starch dissolution --- n/a --- poly(3-hydroxybutyrate-co-3hydroxyhexanoate)-PHBH --- poly(ε-caprolactone)-PCL
Choose an application
This work covers all aspects related to the obtainment, production, design, and processing of biopolymers obtained from natural resources. Moreover, it studies characteristics related to the improvement of their performance to increase their potential application at an industrial level, in line with the concept of a global circular economy. Thus, this work firstly classifies biopolymers obtained from natural resources (e.g., biobased building blocks and biopolymers extracted directly from plants and biomass), and then summarizes several cutting-edge research works focused on enhancing the performance of biopolymers from natural resources to extend their application in the industrial sector, and contribute to the transition to more sustainable plastics.
PHBH --- almond shell flour --- mechanical properties --- thermal characterization --- WPCs --- bacterial polyesters --- poly(3-hydroxybutyrate-co-3hydroxyhexanoate)—PHBH --- poly(ε-caprolactone)—PCL --- binary blends --- improved toughness --- mechanical and thermal characterization --- Cucumis metuliferus --- extraction --- antioxidant activity --- coating --- cellulose acetate --- LDPE --- bilayer packaging --- active packaging --- poly(lactic acid) --- mechanical recycling --- yerba mate --- bionanocomposites --- polysulfide-derived polymers --- cottonseed oil --- fatty acid of cottonseed oil --- sodium soap of cottonseed oil --- PLA --- nanocomposites --- functional properties --- thymol --- migration --- films --- cutin --- cuticles --- bioplastics --- biopolymers --- solanum: CPMAS 13C NMR --- softgels --- mucilage --- in vitro digestion --- bioaccessibility --- bran content --- plasticized wheat flour --- citric acid --- biobased blends --- biopolymer --- carboxymethyl cellulose --- solid polymer electrolyte --- ionic transport --- chitosan --- potato starch --- microwave --- foam --- orthogonal experiments --- empty fruit bunch --- regenerated cellulose --- ionic liquid --- methyl methacrylate --- 3D printing --- syringe extrusion 3D printing --- hydroxypropyl methylcellulose --- orodispersible film --- phenytoin --- PA610 --- halloysite nanotubes (HNTs) --- flame retardant --- cone calorimeter --- agricultural waste --- asparagus --- CMC --- degree of substitution --- DS --- cellulose extraction --- thermoplastic starch --- dolomite --- biocomposite --- sonication --- bacterial cellulose --- nata de coco --- sodium hydroxide --- lignin --- nanoparticles --- biorefinery --- organosolv pretreatment --- polyelectrolyte multi-layers --- sodium alginate --- k-carrageenan --- cellulosic nonwoven textile --- surface functionalization --- characterization --- bio-sorption --- isotherms --- natural fibers --- soy protein --- chitin --- coir --- comfort --- functional textiles --- Circular Bioeconomy --- carbonation reaction --- selectivity optimization --- carbonated epoxidized linseed oil --- non-isocyanate polyurethane --- argan shell particles --- wood plastic composite --- polyethylene --- compatibilization --- air permeability --- fungal fibers --- hemp fibers --- microstructure --- mycocel --- softwood fibers --- virus membrane filtration --- allotropic transition --- choline chloride --- plasticizer --- starch dissolution --- n/a --- poly(3-hydroxybutyrate-co-3hydroxyhexanoate)-PHBH --- poly(ε-caprolactone)-PCL
Choose an application
This work covers all aspects related to the obtainment, production, design, and processing of biopolymers obtained from natural resources. Moreover, it studies characteristics related to the improvement of their performance to increase their potential application at an industrial level, in line with the concept of a global circular economy. Thus, this work firstly classifies biopolymers obtained from natural resources (e.g., biobased building blocks and biopolymers extracted directly from plants and biomass), and then summarizes several cutting-edge research works focused on enhancing the performance of biopolymers from natural resources to extend their application in the industrial sector, and contribute to the transition to more sustainable plastics.
Technology: general issues --- History of engineering & technology --- PHBH --- almond shell flour --- mechanical properties --- thermal characterization --- WPCs --- bacterial polyesters --- poly(3-hydroxybutyrate-co-3hydroxyhexanoate)-PHBH --- poly(ε-caprolactone)-PCL --- binary blends --- improved toughness --- mechanical and thermal characterization --- Cucumis metuliferus --- extraction --- antioxidant activity --- coating --- cellulose acetate --- LDPE --- bilayer packaging --- active packaging --- poly(lactic acid) --- mechanical recycling --- yerba mate --- bionanocomposites --- polysulfide-derived polymers --- cottonseed oil --- fatty acid of cottonseed oil --- sodium soap of cottonseed oil --- PLA --- nanocomposites --- functional properties --- thymol --- migration --- films --- cutin --- cuticles --- bioplastics --- biopolymers --- solanum: CPMAS 13C NMR --- softgels --- mucilage --- in vitro digestion --- bioaccessibility --- bran content --- plasticized wheat flour --- citric acid --- biobased blends --- biopolymer --- carboxymethyl cellulose --- solid polymer electrolyte --- ionic transport --- chitosan --- potato starch --- microwave --- foam --- orthogonal experiments --- empty fruit bunch --- regenerated cellulose --- ionic liquid --- methyl methacrylate --- 3D printing --- syringe extrusion 3D printing --- hydroxypropyl methylcellulose --- orodispersible film --- phenytoin --- PA610 --- halloysite nanotubes (HNTs) --- flame retardant --- cone calorimeter --- agricultural waste --- asparagus --- CMC --- degree of substitution --- DS --- cellulose extraction --- thermoplastic starch --- dolomite --- biocomposite --- sonication --- bacterial cellulose --- nata de coco --- sodium hydroxide --- lignin --- nanoparticles --- biorefinery --- organosolv pretreatment --- polyelectrolyte multi-layers --- sodium alginate --- k-carrageenan --- cellulosic nonwoven textile --- surface functionalization --- characterization --- bio-sorption --- isotherms --- natural fibers --- soy protein --- chitin --- coir --- comfort --- functional textiles --- Circular Bioeconomy --- carbonation reaction --- selectivity optimization --- carbonated epoxidized linseed oil --- non-isocyanate polyurethane --- argan shell particles --- wood plastic composite --- polyethylene --- compatibilization --- air permeability --- fungal fibers --- hemp fibers --- microstructure --- mycocel --- softwood fibers --- virus membrane filtration --- allotropic transition --- choline chloride --- plasticizer --- starch dissolution --- PHBH --- almond shell flour --- mechanical properties --- thermal characterization --- WPCs --- bacterial polyesters --- poly(3-hydroxybutyrate-co-3hydroxyhexanoate)-PHBH --- poly(ε-caprolactone)-PCL --- binary blends --- improved toughness --- mechanical and thermal characterization --- Cucumis metuliferus --- extraction --- antioxidant activity --- coating --- cellulose acetate --- LDPE --- bilayer packaging --- active packaging --- poly(lactic acid) --- mechanical recycling --- yerba mate --- bionanocomposites --- polysulfide-derived polymers --- cottonseed oil --- fatty acid of cottonseed oil --- sodium soap of cottonseed oil --- PLA --- nanocomposites --- functional properties --- thymol --- migration --- films --- cutin --- cuticles --- bioplastics --- biopolymers --- solanum: CPMAS 13C NMR --- softgels --- mucilage --- in vitro digestion --- bioaccessibility --- bran content --- plasticized wheat flour --- citric acid --- biobased blends --- biopolymer --- carboxymethyl cellulose --- solid polymer electrolyte --- ionic transport --- chitosan --- potato starch --- microwave --- foam --- orthogonal experiments --- empty fruit bunch --- regenerated cellulose --- ionic liquid --- methyl methacrylate --- 3D printing --- syringe extrusion 3D printing --- hydroxypropyl methylcellulose --- orodispersible film --- phenytoin --- PA610 --- halloysite nanotubes (HNTs) --- flame retardant --- cone calorimeter --- agricultural waste --- asparagus --- CMC --- degree of substitution --- DS --- cellulose extraction --- thermoplastic starch --- dolomite --- biocomposite --- sonication --- bacterial cellulose --- nata de coco --- sodium hydroxide --- lignin --- nanoparticles --- biorefinery --- organosolv pretreatment --- polyelectrolyte multi-layers --- sodium alginate --- k-carrageenan --- cellulosic nonwoven textile --- surface functionalization --- characterization --- bio-sorption --- isotherms --- natural fibers --- soy protein --- chitin --- coir --- comfort --- functional textiles --- Circular Bioeconomy --- carbonation reaction --- selectivity optimization --- carbonated epoxidized linseed oil --- non-isocyanate polyurethane --- argan shell particles --- wood plastic composite --- polyethylene --- compatibilization --- air permeability --- fungal fibers --- hemp fibers --- microstructure --- mycocel --- softwood fibers --- virus membrane filtration --- allotropic transition --- choline chloride --- plasticizer --- starch dissolution
Listing 1 - 7 of 7 |
Sort by
|