Narrow your search
Listing 1 - 10 of 15 << page
of 2
>>
Sort by

Book
Optimierung und Approximation
Author:
ISBN: 1283398613 9786613398611 3110218151 Year: 2010 Publisher: Berlin ; Boston : De Gruyter,

Loading...
Export citation

Choose an application

Bookmark

Abstract

A comprehensive and rigorous introduction to optimization and approximation, including many exercises and examples.


Book
Nonlinear programming
Author:
ISBN: 3110315289 3110315270 9783110315288 9781306430036 1306430038 9783110315271 Year: 2014 Publisher: Berlin Boston

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is an introduction to nonlinear programming. It deals with the theoretical foundations and solution methods, beginning with the classical procedures and reaching up to "modern" methods like trust region methods or procedures for nonlinear and global optimization. A comprehensive bibliography including diverse web sites with information about nonlinear programming, in particular software, is presented. Without sacrificing the necessary mathematical rigor, excessive formalisms are avoided. Several examples, exercises with detailed solutions, and applications are provided, making the text adequate for individual studies. The book is written for students from the fields of applied mathematics, engineering, economy, and computation.


Book
Convex Optimization for Machine Learning.
Author:
ISBN: 1638280533 1638280525 Year: 2022 Publisher: Norwell, MA : Now Publishers,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book covers an introduction to convex optimization, one of the powerful and tractable optimization problems that can be efficiently solved on a computer. The goal of the book is tohelp develop a sense of what convex optimization is, and how it can be used in a widening array of practical contexts with a particular emphasis on machine learning.The first part of the book covers core concepts of convex sets, convex functions, and related basic definitions that serve understanding convex optimization and its corresponding models. The second part deals with one very useful theory, called duality, which enables us to: (1) gain algorithmic insights; and (2) obtain an approximate solution to non-convex optimization problems which are often difficult to solve. The last part focuses on modern applications in machine learning and deep learning.A defining feature of this book is that it succinctly relates the “story” of how convex optimization plays a role, via historical examples and trending machine learning applications. Another key feature is that it includes programming implementation of a variety of machine learning algorithms inspired by optimization fundamentals, together with a brief tutorial of the used programming tools. The implementation is based on Python, CVXPY, and TensorFlow.This book does not follow a traditional textbook-style organization, but is streamlined via a series of lecture notes that are intimately related, centered around coherent themes and concepts. It serves as a textbook mainly for a senior-level undergraduate course, yet is also suitable for a first-year graduate course. Readers benefit from having a good background in linear algebra, some exposure to probability, and basic familiarity with Python.


Book
Convex analysis and optimization in Hadamard spaces
Author:
ISBN: 3110361620 3110391082 9783110361629 9783110391084 9783110361032 3110361035 Year: 2014 Publisher: Berlin, [Germany] ; Boston, [Massachusetts] : Walter de Gruyter GmbH,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the past two decades, convex analysis and optimization have been developed in Hadamard spaces. This book represents a first attempt to give a systematic account on the subject. Hadamard spaces are complete geodesic spaces of nonpositive curvature. They include Hilbert spaces, Hadamard manifolds, Euclidean buildings and many other important spaces. While the role of Hadamard spaces in geometry and geometric group theory has been studied for a long time, first analytical results appeared as late as in the 1990's. Remarkably, it turns out that Hadamard spaces are appropriate for the theory of convex sets and convex functions outside of linear spaces. Since convexity underpins a large number of results in the geometry of Hadamard spaces, we believe that its systematic study is of substantial interest. Optimization methods then address various computational issues and provide us with approximation algorithms which may be useful in sciences and engineering. We present a detailed description of such an application to computational phylogenetics. The book is primarily aimed at both graduate students and researchers in analysis and optimization, but it is accessible to advanced undergraduate students as well.


Dissertation
Semidefinite optimization for the separability problem
Authors: --- --- --- --- --- et al.
Year: 2022 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since the discovery of quantum entanglement, characterization and detection of multipartite entanglement has remained an open question. In this work, we present how one can map the separability problem onto the truncated moment problem in probability theory. It leads to a necessary and sufficient condition for the separability of arbitrary quantum systems with arbitrary symmetries between the subparts. A semidefinite algorithm is presented, whose outcome provides a certificate of separability, or entanglement.


Book
Machine Learning in Sensors and Imaging
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens.

Keywords

star image --- image denoising --- reinforcement learning --- maximum likelihood estimation --- mixed Poisson–Gaussian likelihood --- machine learning-based classification --- non-uniform foundation --- stochastic analysis --- vehicle–pavement–foundation interaction --- forest growing stem volume --- coniferous plantations --- variable selection --- texture feature --- random forest --- red-edge band --- on-shelf availability --- semi-supervised learning --- deep learning --- image classification --- machine learning --- explainable artificial intelligence --- wildfire --- risk assessment --- Naïve bayes --- transmission-line corridors --- image encryption --- compressive sensing --- plaintext related --- chaotic system --- convolutional neural network --- color prior model --- object detection --- piston error detection --- segmented telescope --- BP artificial neural network --- modulation transfer function --- computer vision --- intelligent vehicles --- extrinsic camera calibration --- structure from motion --- convex optimization --- temperature estimation --- BLDC --- electric machine protection --- touchscreen --- capacitive --- display --- SNR --- stylus --- laser cutting --- quality monitoring --- artificial neural network --- burr formation --- cut interruption --- fiber laser --- semi-supervised --- fuzzy --- noisy --- real-world --- plankton --- marine --- activity recognition --- wearable sensors --- imbalanced activities --- sampling methods --- path planning --- Q-learning --- neural network --- YOLO algorithm --- robot arm --- target reaching --- obstacle avoidance


Book
Plug-in Hybrid Electric Vehicle (PHEV)
Author:
ISBN: 3039214543 3039214535 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Climate change, urban air quality, and dependency on crude oil are important societal challenges. In the transportation sector especially, clean and energy efficient technologies must be developed. Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have gained a growing interest in the vehicle industry. Nowadays, the commercialization of EVs and PHEVs has been possible in different applications (i.e., light duty, medium duty, and heavy duty vehicles) thanks to the advances in energy storage systems, power electronics converters (including DC/DC converters, DC/AC inverters, and battery charging systems), electric machines, and energy efficient power flow control strategies. This book is based on the Special Issue of the journal Applied Sciences on “Plug-In Hybrid Electric Vehicles (PHEVs)”. This collection of research articles includes topics such as novel propulsion systems, emerging power electronics and their control algorithms, emerging electric machines and control techniques, energy storage systems, including BMS, and efficient energy management strategies for hybrid propulsion, vehicle-to-grid (V2G), vehicle-to-home (V2H), grid-to-vehicle (G2V) technologies, and wireless power transfer (WPT) systems.

Keywords

hybrid energy storage system --- plug-in hybrid electric vehicle --- Li-ion battery --- emerging electric machines --- lithium-ion capacitor --- electric vehicles (EVs) --- efficient energy management strategies for hybrid propulsion systems --- plug-in hybrid --- attributional --- electric vehicle --- energy system --- energy efficiency --- modified one-state hysteresis model --- air quality --- adaptive neuron-fuzzy inference system (ANFIS) --- Markov decision process (MDP) --- simulated annealing --- Paris Agreement --- mobility needs --- interleaved multiport converte --- dynamic programming --- state of health estimation --- strong track filter --- LCA --- modelling --- consequential --- losses model --- voltage vector distribution --- parallel hybrid electric vehicle --- electricity mix --- time-delay input --- convex optimization --- lifetime model --- artificial neural network (ANN) --- Li(Ni1/3Co1/3Mn1/3)O2 battery --- battery power --- CO2 --- capacity degradation --- regenerative braking --- open-end winding --- novel propulsion systems --- group method of data handling (GMDH) --- state of charge --- Well-to-Wheel --- energy storage systems --- including wide bandgap (WBG) technology --- wide bandgap (WBG) technologies --- marginal --- lithium polymer battery --- life-cycle assessment (LCA) --- energy management --- dual inverter --- lithium-ion battery --- measurements --- plug-in hybrid electric vehicles (PHEVs) --- emerging power electronics --- Q-learning (QL) --- fuel consumption characteristics --- Plugin Hybrid electric vehicle --- Energy Storage systems --- meta-analysis --- range-extender --- engine-on power --- reinforcement learning (RL) --- multi-objective genetic algorithm --- power sharing --- energy management strategy --- power distribution --- hybrid electric vehicles --- system modelling


Book
Control theoretic splines
Authors: ---
ISBN: 1282457969 1282936069 9786612936067 9786612457968 1400833876 9781400833870 9781282457966 6612457961 9780691132969 0691132968 Year: 2010 Publisher: Princeton Oxford Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Splines, both interpolatory and smoothing, have a long and rich history that has largely been application driven. This book unifies these constructions in a comprehensive and accessible way, drawing from the latest methods and applications to show how they arise naturally in the theory of linear control systems. Magnus Egerstedt and Clyde Martin are leading innovators in the use of control theoretic splines to bring together many diverse applications within a common framework. In this book, they begin with a series of problems ranging from path planning to statistics to approximation. Using the tools of optimization over vector spaces, Egerstedt and Martin demonstrate how all of these problems are part of the same general mathematical framework, and how they are all, to a certain degree, a consequence of the optimization problem of finding the shortest distance from a point to an affine subspace in a Hilbert space. They cover periodic splines, monotone splines, and splines with inequality constraints, and explain how any finite number of linear constraints can be added. This book reveals how the many natural connections between control theory, numerical analysis, and statistics can be used to generate powerful mathematical and analytical tools. This book is an excellent resource for students and professionals in control theory, robotics, engineering, computer graphics, econometrics, and any area that requires the construction of curves based on sets of raw data.

Keywords

Interpolation. --- Smoothing (Numerical analysis) --- Smoothing (Statistics) --- Curve fitting. --- Splines. --- Spline theory. --- Spline functions --- Approximation theory --- Interpolation --- Joints (Engineering) --- Mechanical movements --- Harmonic drives --- Fitting, Curve --- Numerical analysis --- Least squares --- Statistics --- Curve fitting --- Graduation (Statistics) --- Roundoff errors --- Graphic methods --- Accuracy and precision. --- Affine space. --- Affine variety. --- Algorithm. --- Approximation. --- Arbitrarily large. --- B-spline. --- Banach space. --- Bernstein polynomial. --- Bifurcation theory. --- Big O notation. --- Birkhoff interpolation. --- Boundary value problem. --- Bézier curve. --- Chaos theory. --- Computation. --- Computational problem. --- Condition number. --- Constrained optimization. --- Continuous function (set theory). --- Continuous function. --- Control function (econometrics). --- Control theory. --- Controllability. --- Convex optimization. --- Convolution. --- Cubic Hermite spline. --- Data set. --- Derivative. --- Differentiable function. --- Differential equation. --- Dimension (vector space). --- Directional derivative. --- Discrete mathematics. --- Dynamic programming. --- Equation. --- Estimation. --- Filtering problem (stochastic processes). --- Gaussian quadrature. --- Gradient descent. --- Gramian matrix. --- Growth curve (statistics). --- Hermite interpolation. --- Hermite polynomials. --- Hilbert projection theorem. --- Hilbert space. --- Initial condition. --- Initial value problem. --- Integral equation. --- Iterative method. --- Karush–Kuhn–Tucker conditions. --- Kernel method. --- Lagrange polynomial. --- Law of large numbers. --- Least squares. --- Linear algebra. --- Linear combination. --- Linear filter. --- Linear map. --- Mathematical optimization. --- Mathematics. --- Maxima and minima. --- Monotonic function. --- Nonlinear programming. --- Nonlinear system. --- Normal distribution. --- Numerical analysis. --- Numerical stability. --- Optimal control. --- Optimization problem. --- Ordinary differential equation. --- Orthogonal polynomials. --- Parameter. --- Piecewise. --- Pointwise. --- Polynomial interpolation. --- Polynomial. --- Probability distribution. --- Quadratic programming. --- Random variable. --- Rate of convergence. --- Ratio test. --- Riccati equation. --- Simpson's rule. --- Simultaneous equations. --- Smoothing spline. --- Smoothing. --- Smoothness. --- Special case. --- Spline (mathematics). --- Spline interpolation. --- Statistic. --- Stochastic calculus. --- Stochastic. --- Telemetry. --- Theorem. --- Trapezoidal rule. --- Waypoint. --- Weight function. --- Without loss of generality.


Book
Theoretical Computer Science and Discrete Mathematics
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book includes 15 articles published in the Special Issue "Theoretical Computer Science and Discrete Mathematics" of Symmetry (ISSN 2073-8994). This Special Issue is devoted to original and significant contributions to theoretical computer science and discrete mathematics. The aim was to bring together research papers linking different areas of discrete mathematics and theoretical computer science, as well as applications of discrete mathematics to other areas of science and technology. The Special Issue covers topics in discrete mathematics including (but not limited to) graph theory, cryptography, numerical semigroups, discrete optimization, algorithms, and complexity.

Keywords

Research & information: general --- Mathematics & science --- fuzzy set --- n-Pythagorean --- n-PFS algebra --- triangular norms --- outer-independent Roman domination --- Roman domination --- vertex cover --- rooted product graph --- total domination --- domination --- secure domination --- secure Italian domination --- weak roman domination --- w-domination --- cryptanalysis --- group key establishment --- topology optimization --- optimization --- filtering --- method --- penalization --- weight factor --- FEM --- MATLAB --- SIMP --- estimated prime factor --- integer factorisation problem --- continued fraction --- Fermat’s Factoring Algorithm --- genetic algorithm --- AES(t) --- heuristics --- microaggregation --- statistical disclosure control --- graph theory --- traveling salesman problem --- data privacy --- location privacy --- differentials in graphs --- strong differential --- quasi-total strong differential --- quasi-total Italian domination number --- numerical semigroup --- forest --- ordinarization transform --- quasi-ordinarization transform --- load redistribution --- leveling power consumption per phase --- three-phase asymmetric distribution networks --- ideal power consumption --- mixed-integer convex optimization --- strongly total Roman domination --- total Roman domination --- lexicographic product graph --- improved crow search algorithm --- normal Gaussian distribution --- phase swapping problem --- power losses --- asymmetric distribution grids --- vortex search algorithm --- nonidentical parallel production lines --- axle housing machining --- mixed model production --- eligibility constraint --- fuzzy due date --- grey wolf optimizer --- n/a --- Fermat's Factoring Algorithm


Book
Machine Learning in Sensors and Imaging
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens.

Keywords

Technology: general issues --- History of engineering & technology --- star image --- image denoising --- reinforcement learning --- maximum likelihood estimation --- mixed Poisson–Gaussian likelihood --- machine learning-based classification --- non-uniform foundation --- stochastic analysis --- vehicle–pavement–foundation interaction --- forest growing stem volume --- coniferous plantations --- variable selection --- texture feature --- random forest --- red-edge band --- on-shelf availability --- semi-supervised learning --- deep learning --- image classification --- machine learning --- explainable artificial intelligence --- wildfire --- risk assessment --- Naïve bayes --- transmission-line corridors --- image encryption --- compressive sensing --- plaintext related --- chaotic system --- convolutional neural network --- color prior model --- object detection --- piston error detection --- segmented telescope --- BP artificial neural network --- modulation transfer function --- computer vision --- intelligent vehicles --- extrinsic camera calibration --- structure from motion --- convex optimization --- temperature estimation --- BLDC --- electric machine protection --- touchscreen --- capacitive --- display --- SNR --- stylus --- laser cutting --- quality monitoring --- artificial neural network --- burr formation --- cut interruption --- fiber laser --- semi-supervised --- fuzzy --- noisy --- real-world --- plankton --- marine --- activity recognition --- wearable sensors --- imbalanced activities --- sampling methods --- path planning --- Q-learning --- neural network --- YOLO algorithm --- robot arm --- target reaching --- obstacle avoidance

Listing 1 - 10 of 15 << page
of 2
>>
Sort by