Listing 1 - 7 of 7
Sort by

Periodical
Journal of linear and topological algebra.
Author:
ISSN: 22520201 23455934 Year: 2012 Publisher: [Tehran, Iran] : IAU Central Tehran Branch


Book
Convex analysis and optimization in Hadamard spaces
Author:
ISBN: 3110361620 3110391082 9783110361629 9783110391084 9783110361032 3110361035 Year: 2014 Publisher: Berlin, [Germany] ; Boston, [Massachusetts] : Walter de Gruyter GmbH,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the past two decades, convex analysis and optimization have been developed in Hadamard spaces. This book represents a first attempt to give a systematic account on the subject. Hadamard spaces are complete geodesic spaces of nonpositive curvature. They include Hilbert spaces, Hadamard manifolds, Euclidean buildings and many other important spaces. While the role of Hadamard spaces in geometry and geometric group theory has been studied for a long time, first analytical results appeared as late as in the 1990's. Remarkably, it turns out that Hadamard spaces are appropriate for the theory of convex sets and convex functions outside of linear spaces. Since convexity underpins a large number of results in the geometry of Hadamard spaces, we believe that its systematic study is of substantial interest. Optimization methods then address various computational issues and provide us with approximation algorithms which may be useful in sciences and engineering. We present a detailed description of such an application to computational phylogenetics. The book is primarily aimed at both graduate students and researchers in analysis and optimization, but it is accessible to advanced undergraduate students as well.


Book
Integral representation theory : applications to convexity, banach spaces and potential theory
Authors: ---
ISBN: 1282714368 9786612714368 3110203219 9783110203219 9783110203202 3110203200 Year: 2010 Publisher: Berlin ; New York : Walter de Gruyter,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This monograph presents the state of the art of convexity, with an emphasis to integral representation. The exposition is focused on Choquet's theory of function spaces with a link to compact convex sets. An important feature of the book is an interplay between various mathematical subjects, such as functional analysis, measure theory, descriptive set theory, Banach spaces theory and potential theory. A substantial part of the material is of fairly recent origin and many results appear in the book form for the first time. The text is self-contained and covers a wide range of applications. From the contents: Geometry of convex sets Choquet theory of function spaces Affine functions on compact convex sets Perfect classes of functions and representation of affine functions Simplicial function spaces Choquet's theory of function cones Topologies on boundaries Several results on function spaces and compact convex sets Continuous and measurable selectors Construction of function spaces Function spaces in potential theory and Dirichlet problem Applications


Book
Optimal Transport Methods in Economics
Author:
ISBN: 1400883598 9781400883592 0691172765 9780691172767 9780691183466 0691183465 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Optimal Transport Methods in Economics is the first textbook on the subject written especially for students and researchers in economics. Optimal transport theory is used widely to solve problems in mathematics and some areas of the sciences, but it can also be used to understand a range of problems in applied economics, such as the matching between job seekers and jobs, the determinants of real estate prices, and the formation of matrimonial unions. This is the first text to develop clear applications of optimal transport to economic modeling, statistics, and econometrics. It covers the basic results of the theory as well as their relations to linear programming, network flow problems, convex analysis, and computational geometry. Emphasizing computational methods, it also includes programming examples that provide details on implementation. Applications include discrete choice models, models of differential demand, and quantile-based statistical estimation methods, as well as asset pricing models.Authoritative and accessible, Optimal Transport Methods in Economics also features numerous exercises throughout that help you develop your mathematical agility, deepen your computational skills, and strengthen your economic intuition.The first introduction to the subject written especially for economistsIncludes programming examplesFeatures numerous exercises throughoutIdeal for students and researchers alike


Book
An introduction to mathematical analysis for economic theory and econometrics
Authors: --- ---
ISBN: 1400833086 Year: 2009 Publisher: Princeton ; Oxford : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The authors offer an introduction to mathematical analysis with applications in economic theory & econometrics.

Keywords

Economics, Mathematical. --- Mathematical analysis. --- Econometrics. --- Approximation. --- Axiom of choice. --- Banach space. --- Bijection. --- Bounded function. --- Budget set. --- Calculation. --- Cardinality. --- Cauchy sequence. --- Central limit theorem. --- Combination. --- Compact space. --- Complete metric space. --- Concave function. --- Conditional expectation. --- Continuous function (set theory). --- Continuous function. --- Contraction mapping. --- Contradiction. --- Convex analysis. --- Convex set. --- Countable set. --- Dense set. --- Differentiable function. --- Dimension (vector space). --- Dimension. --- Division by zero. --- Dynamic programming. --- Empty set. --- Equation. --- Equivalence class. --- Estimator. --- Existential quantification. --- Finite set. --- Fixed-point theorem. --- Function (mathematics). --- Hahn–Banach theorem. --- Independence (probability theory). --- Indicator function. --- Inequality (mathematics). --- Infimum and supremum. --- Intermediate value theorem. --- Karush–Kuhn–Tucker conditions. --- Law of large numbers. --- Lebesgue measure. --- Limit of a sequence. --- Limit superior and limit inferior. --- Linear algebra. --- Linear function. --- Linear map. --- Linear subspace. --- Loss function. --- Markov chain. --- Mathematical optimization. --- Mathematics. --- Maximal element. --- Measurable function. --- Measure (mathematics). --- Metric space. --- Monotonic function. --- Normed vector space. --- Null set. --- Open set. --- Optimization problem. --- Parameter. --- Pareto efficiency. --- Partially ordered set. --- Preference (economics). --- Preference relation. --- Probability distribution. --- Probability space. --- Probability theory. --- Probability. --- Quantity. --- Random variable. --- Rational number. --- Real number. --- Scientific notation. --- Sequence. --- Set (mathematics). --- Simple function. --- Special case. --- Stochastic process. --- Stone–Weierstrass theorem. --- Subsequence. --- Subset. --- Summation. --- Surjective function. --- Theorem. --- Topological space. --- Topology. --- Uncountable set. --- Uniform continuity. --- Uniform distribution (discrete). --- Union (set theory). --- Upper and lower bounds. --- Utility. --- Variable (mathematics). --- Vector space. --- Zorn's lemma.


Book
Noncooperative game theory : an introduction for engineers and computer scientists
Author:
Year: 2017 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Noncooperative Game Theory is aimed at students interested in using game theory as a design methodology for solving problems in engineering and computer science. João Hespanha shows that such design challenges can be analyzed through game theoretical perspectives that help to pinpoint each problem's essence: Who are the players? What are their goals? Will the solution to "the game" solve the original design problem? Using the fundamentals of game theory, Hespanha explores these issues and more.The use of game theory in technology design is a recent development arising from the intrinsic limitations of classical optimization-based designs. In optimization, one attempts to find values for parameters that minimize suitably defined criteria-such as monetary cost, energy consumption, or heat generated. However, in most engineering applications, there is always some uncertainty as to how the selected parameters will affect the final objective. Through a sequential and easy-to-understand discussion, Hespanha examines how to make sure that the selection leads to acceptable performance, even in the presence of uncertainty-the unforgiving variable that can wreck engineering designs. Hespanha looks at such standard topics as zero-sum, non-zero-sum, and dynamics games and includes a MATLAB guide to coding.Noncooperative Game Theory offers students a fresh way of approaching engineering and computer science applications.An introduction to game theory applications for students of engineering and computer science Materials presented sequentially and in an easy-to-understand fashionTopics explore zero-sum, non-zero-sum, and dynamics gamesMATLAB commands are included

Keywords

Noncooperative games (Mathematics) --- Game theory --- Cooperative games (Mathematics) --- MATLAB. --- Minimax Theorem. --- N-player game. --- Nash equilibrium. --- Separating Hyperplane Theorem. --- Sudoku puzzle. --- action space. --- action. --- admissible Nash equilibrium. --- advertising campaign. --- alternate play. --- average security level. --- battle of the sexes. --- behavioral policy. --- behavioral saddle-point equilibrium. --- best-response equivalent games. --- bilateral symmetric game. --- bimatrix game. --- bimatrix potential. --- chicken game. --- circuit design. --- completely mixed Nash equilibrium. --- computational complexity. --- computer science. --- congestion game. --- continuous time cost-to-go. --- continuous time differential. --- continuous time dynamic programming. --- continuous time dynamic. --- convex analysis. --- convex hull. --- decoupled game. --- design methodology. --- differential game. --- discrete time cost-to-go. --- discrete time dynamic programming. --- discrete time dynamic. --- distributed resource allocation. --- dummy game. --- dynamic game. --- engineering. --- extensive form game representation. --- feedback game. --- fictitious play. --- finite one-player. --- game theory. --- graphical method. --- hyperplane. --- identical interests. --- information structure. --- linear program. --- linear quadratic dynamic. --- minimum. --- mixed Nash equilibrium. --- mixed action space. --- mixed policy. --- mixed saddle-point equilibrium. --- mixed security policy. --- multi-stage game. --- network routing. --- non-feedback game. --- non-zero-sum. --- noncooperative game theory. --- open-loop policy. --- open-loop. --- optimization-based design. --- order interchangeability property. --- policy. --- potential game. --- probability distribution. --- pure N-player game. --- pure policy. --- recursive computation. --- regret. --- robust design. --- rock-paper-scissors. --- rope-pulling. --- saddle-point equilibrium. --- security level. --- security policy. --- simultaneous play. --- single-stage game. --- state feedback information structure. --- state-feedback policy. --- stochastic policy. --- strictly dominating policy. --- symmetry game. --- tic-tac-toe. --- tree structure. --- uncertainty. --- variable termination time. --- war of attrition. --- weakly dominating policy. --- zebra in the lake. --- zero sum dynamic. --- zero-sum matrix. --- zero-sum two-person. --- zero-sum. --- MATLAB. --- Minimax Theorem. --- N-player game. --- Nash equilibrium. --- Separating Hyperplane Theorem. --- Sudoku puzzle. --- action space. --- action. --- admissible Nash equilibrium. --- advertising campaign. --- alternate play. --- average security level. --- battle of the sexes. --- behavioral policy. --- behavioral saddle-point equilibrium. --- best-response equivalent games. --- bilateral symmetric game. --- bimatrix game. --- bimatrix potential. --- chicken game. --- circuit design. --- completely mixed Nash equilibrium. --- computational complexity. --- computer science. --- congestion game. --- continuous time cost-to-go. --- continuous time differential. --- continuous time dynamic programming. --- continuous time dynamic. --- convex analysis. --- convex hull. --- decoupled game. --- design methodology. --- differential game. --- discrete time cost-to-go. --- discrete time dynamic programming. --- discrete time dynamic. --- distributed resource allocation. --- dummy game. --- dynamic game. --- engineering. --- extensive form game representation. --- feedback game. --- fictitious play. --- finite one-player. --- game theory. --- graphical method. --- hyperplane. --- identical interests. --- information structure. --- linear program. --- linear quadratic dynamic. --- minimum. --- mixed Nash equilibrium. --- mixed action space. --- mixed policy. --- mixed saddle-point equilibrium. --- mixed security policy. --- multi-stage game. --- network routing. --- non-feedback game. --- non-zero-sum. --- noncooperative game theory. --- open-loop policy. --- open-loop. --- optimization-based design. --- order interchangeability property. --- policy. --- potential game. --- probability distribution. --- pure N-player game. --- pure policy. --- recursive computation. --- regret. --- robust design. --- rock-paper-scissors. --- rope-pulling. --- saddle-point equilibrium. --- security level. --- security policy. --- simultaneous play. --- single-stage game. --- state feedback information structure. --- state-feedback policy. --- stochastic policy. --- strictly dominating policy. --- symmetry game. --- tic-tac-toe. --- tree structure. --- uncertainty. --- variable termination time. --- war of attrition. --- weakly dominating policy. --- zebra in the lake. --- zero sum dynamic. --- zero-sum matrix. --- zero-sum two-person. --- zero-sum.


Book
Noncooperative game theory : an introduction for engineers and computer scientists
Author:
Year: 2017 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Noncooperative Game Theory is aimed at students interested in using game theory as a design methodology for solving problems in engineering and computer science. João Hespanha shows that such design challenges can be analyzed through game theoretical perspectives that help to pinpoint each problem's essence: Who are the players? What are their goals? Will the solution to "the game" solve the original design problem? Using the fundamentals of game theory, Hespanha explores these issues and more.The use of game theory in technology design is a recent development arising from the intrinsic limitations of classical optimization-based designs. In optimization, one attempts to find values for parameters that minimize suitably defined criteria-such as monetary cost, energy consumption, or heat generated. However, in most engineering applications, there is always some uncertainty as to how the selected parameters will affect the final objective. Through a sequential and easy-to-understand discussion, Hespanha examines how to make sure that the selection leads to acceptable performance, even in the presence of uncertainty-the unforgiving variable that can wreck engineering designs. Hespanha looks at such standard topics as zero-sum, non-zero-sum, and dynamics games and includes a MATLAB guide to coding.Noncooperative Game Theory offers students a fresh way of approaching engineering and computer science applications.An introduction to game theory applications for students of engineering and computer science Materials presented sequentially and in an easy-to-understand fashionTopics explore zero-sum, non-zero-sum, and dynamics gamesMATLAB commands are included

Keywords

Noncooperative games (Mathematics) --- Game theory --- Cooperative games (Mathematics) --- MATLAB. --- Minimax Theorem. --- N-player game. --- Nash equilibrium. --- Separating Hyperplane Theorem. --- Sudoku puzzle. --- action space. --- action. --- admissible Nash equilibrium. --- advertising campaign. --- alternate play. --- average security level. --- battle of the sexes. --- behavioral policy. --- behavioral saddle-point equilibrium. --- best-response equivalent games. --- bilateral symmetric game. --- bimatrix game. --- bimatrix potential. --- chicken game. --- circuit design. --- completely mixed Nash equilibrium. --- computational complexity. --- computer science. --- congestion game. --- continuous time cost-to-go. --- continuous time differential. --- continuous time dynamic programming. --- continuous time dynamic. --- convex analysis. --- convex hull. --- decoupled game. --- design methodology. --- differential game. --- discrete time cost-to-go. --- discrete time dynamic programming. --- discrete time dynamic. --- distributed resource allocation. --- dummy game. --- dynamic game. --- engineering. --- extensive form game representation. --- feedback game. --- fictitious play. --- finite one-player. --- game theory. --- graphical method. --- hyperplane. --- identical interests. --- information structure. --- linear program. --- linear quadratic dynamic. --- minimum. --- mixed Nash equilibrium. --- mixed action space. --- mixed policy. --- mixed saddle-point equilibrium. --- mixed security policy. --- multi-stage game. --- network routing. --- non-feedback game. --- non-zero-sum. --- noncooperative game theory. --- open-loop policy. --- open-loop. --- optimization-based design. --- order interchangeability property. --- policy. --- potential game. --- probability distribution. --- pure N-player game. --- pure policy. --- recursive computation. --- regret. --- robust design. --- rock-paper-scissors. --- rope-pulling. --- saddle-point equilibrium. --- security level. --- security policy. --- simultaneous play. --- single-stage game. --- state feedback information structure. --- state-feedback policy. --- stochastic policy. --- strictly dominating policy. --- symmetry game. --- tic-tac-toe. --- tree structure. --- uncertainty. --- variable termination time. --- war of attrition. --- weakly dominating policy. --- zebra in the lake. --- zero sum dynamic. --- zero-sum matrix. --- zero-sum two-person. --- zero-sum.

Listing 1 - 7 of 7
Sort by