Listing 1 - 10 of 106 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
Choose an application
The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following the papers of Bombieri and Vojta. Also acting as a concise introduction to Diophantine geometry, the text starts from basics of algebraic number theory, touches on several important theorems and techniques (including the theory of heights, the Mordell-Weil theorem, Siegel's lemma and Roth's lemma) from Diophantine geometry, and culminates in the proof of the Mordell conjecture. Based on the authors' own teaching experience, it will be of great value to advanced undergraduate and graduate students in algebraic geometry and number theory, as well as researchers interested in Diophantine geometry as a whole.
Choose an application
Choose an application
L'histoire des mathématiques sait ménager le suspense. Des conjectures d'une redoutable difficulté y apparaissent parfois pour défier pendant longtemps la sagacité des chercheurs. Après la conjecture de Fermat, récemment élucidée au bout de quatre siècles, celle de Poincaré, énoncée en 1903, vient de rendre l'âme. Le récit haletant de cette quête superpose, à un siècle de distance, les portraits d'Henri Poincaré, le meilleur mathématicien de son époque, et de Grigori Perelman, chercheur russe qui a refusé tous les honneurs pour occuper une place imprenable au Panthéon des mathématiques.
Mathematics --- Poincaré conjecture --- Mathématiques --- Conjecture de Poincaré --- Popular works --- Ouvrages de vulgarisation --- History --- Poincaré conjecture --- Mathématiques --- Conjecture de Poincaré --- Mathematics - History
Choose an application
The Novikov Conjecture is the single most important unsolved problem in the topology of high-dimensional non-simply connected manifolds. These two volumes are the outgrowth of a conference held at the Mathematisches Forschungsinstitut Oberwolfach (Germany) in September 1993, on the subject of 'Novikov Conjectures, Index Theorems and Rigidity'. They are intended to give a snapshot of the status of work on the Novikov Conjecture and related topics from many points of view: geometric topology, homotopy theory, algebra, geometry and analysis. Volume 1 contains: • A detailed historical survey and bibliography of the Novikov Conjecture and of related subsequent developments, including an annotated reprint (both in the original Russian and in English translation) of Novikov's original 1970 statement of his conjecture; • An annotated problem list; • The texts of several important unpublished classic papers by Milnor, Browder, and Kasparov; and • Research/survey papers on the Novikov Conjecture by Ferry/Weinberger, Gromov, Mishchenko, Quinn, Ranicki, and Rosenberg.
Index theorems --- Novikov conjecture --- Conjecture, Novikov --- Novikov's conjecture --- Manifolds (Mathematics) --- Differential operators --- Global analysis (Mathematics) --- Index theory (Mathematics) --- Rigidity (Geometry) --- Congresses. --- Novikov conjecture - Congresses. --- Index theorems - Congresses.
Choose an application
Novembre 2002. Grigori Perelman publie sans prévenir la démonstration de la célèbre conjecture de Poincaré qui défie depuis un siècle l'intelligence des meilleurs mathématiciens. A la surprise générale, elle se révèle exacte. Mais Perelman n'empoche pas le million de dollars de récompense proposé par l'Institut Clay, ni n'accepte les nombreuses propositions de travail que lui adressent les plus prestigieuses universités. Il refuse la médaille Fields qui lui est décernée en 2006 et, prenant ses distances avec la communauté scientifique, se retire du monde. Cherchant à percer le mystère Perelman, Masha Gessen raconte l'éclosion d'un génie solitaire. Au gré d'une enquête fouillée et jalonnée de rencontres avec des proches, des camarades ou des professeurs, elle trace avec brio le portrait d'un prodige des mathématiques doté d'une intelligence exceptionnelle.
Mathematicians --- Poincaré conjecture --- Perelman, Grigori, - 1966-
Choose an application
Goldbach conjecture --- Number Theory --- Numbers, Prime --- Goldbach conjecture. --- Number theory. --- Numbers, Prime.
Choose an application
Poincaré conjecture --- Ricci flow --- Differential equations, Partial --- Differential equations, Partial. --- Poincaré conjecture. --- Ricci flow.
Listing 1 - 10 of 106 | << page >> |
Sort by
|