Narrow your search

Library

ULiège (2)

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

VIVES (1)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2022 (1)

2020 (3)

Listing 1 - 4 of 4
Sort by

Book
Nonequilibrium Phenomena in Strongly Correlated Systems
Authors: --- --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book is devoted to the fundamental aspects of the non-equilibrium statistical mechanics of many-particle systems. The concept of Zubarev’s approach, which generalizes the notion of Gibbs’ ensembles, and introduces a nonequilibrium statistical operator, providing an adequate basis for dealing with strongly correlated systems that are governed by nonperturbative phenomena, such as the formation of bound states, quantum condensates and the instability of the vacuum. Besides a general introduction to the formalism, this book contains contributions devoted to the applications of Zubarev’s method to the solution of modern problems in different fields of physics: transport theory, hydrodynamics, high-energy physics, quark-gluon plasma and hadron production in heavy-ion collisions. The book provides valuable information for researchers and students in these fields, requiring powerful concepts to solve fundamental problems of non-equilibrium phenomena in strongly

Keywords

Research & information: general --- relativistic fluid dynamics --- statistical operator --- non-equilibrium states --- transport coefficients --- correlation functions --- open quantum system --- master equation --- non-equilibrium statistical operator --- relevant statistical operator --- quasi-temperature --- dynamic correlations --- QCD matter --- phase transition --- critical point --- nonequilibrium thermo-field dynamics --- kinetics --- hydrodynamics --- kinetic equations --- bound states --- quark-gluon plasma --- out-of-equilibrium quantum field theory --- dimensional renormalization --- finite-time-path formalism --- Boltzmann equation --- gluon saturation --- pion enhancement --- ALICE --- LHC --- thermalization --- hadronization --- Gibbs equilibrium statistical mechanics --- Bogoliubov’s quasi-averages --- pressure fluctuations --- relativistic ideal gas --- kinetic theory --- particle production --- Schwinger effect --- Zitterbewegung --- low density approximation --- quantum statistical mechanics --- relativistic hydrodynamics --- Kubo formulae --- graphene --- dynamic critical phenomena --- high-field and nonlinear effects --- QCD --- gluons --- Bose-Einstein condensate --- Fokker-Planck equation --- relaxation time approximation --- linear response theory --- permittivity, dynamical conductivity, absorption coefficient, dynamical collision frequency --- ordered lattice, disordered lattice --- Umklapp process --- interband transitions --- finite temperature field theory --- path integrals --- quantum fields in curved spacetime --- symmetries --- quantum anomalies --- irreversibility --- entropy --- electrical conductivity --- Zubarev operator --- Unruh effect --- acceleration --- Zubarev formalism --- pion chemical potential --- relativistic fluid dynamics --- statistical operator --- non-equilibrium states --- transport coefficients --- correlation functions --- open quantum system --- master equation --- non-equilibrium statistical operator --- relevant statistical operator --- quasi-temperature --- dynamic correlations --- QCD matter --- phase transition --- critical point --- nonequilibrium thermo-field dynamics --- kinetics --- hydrodynamics --- kinetic equations --- bound states --- quark-gluon plasma --- out-of-equilibrium quantum field theory --- dimensional renormalization --- finite-time-path formalism --- Boltzmann equation --- gluon saturation --- pion enhancement --- ALICE --- LHC --- thermalization --- hadronization --- Gibbs equilibrium statistical mechanics --- Bogoliubov’s quasi-averages --- pressure fluctuations --- relativistic ideal gas --- kinetic theory --- particle production --- Schwinger effect --- Zitterbewegung --- low density approximation --- quantum statistical mechanics --- relativistic hydrodynamics --- Kubo formulae --- graphene --- dynamic critical phenomena --- high-field and nonlinear effects --- QCD --- gluons --- Bose-Einstein condensate --- Fokker-Planck equation --- relaxation time approximation --- linear response theory --- permittivity, dynamical conductivity, absorption coefficient, dynamical collision frequency --- ordered lattice, disordered lattice --- Umklapp process --- interband transitions --- finite temperature field theory --- path integrals --- quantum fields in curved spacetime --- symmetries --- quantum anomalies --- irreversibility --- entropy --- electrical conductivity --- Zubarev operator --- Unruh effect --- acceleration --- Zubarev formalism --- pion chemical potential


Book
Magnetic reconnection : a modern synthesis of theory, experiment, and observations
Author:
ISBN: 0691232989 Year: 2022 Publisher: Princeton, N.J. : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The essential introduction to magnetic reconnection—written by a leading pioneer of the fieldPlasmas comprise more than 99 percent of the visible universe; and, wherever plasmas are, magnetic reconnection occurs. In this common and yet incompletely understood physical process, oppositely directed magnetic fields in a plasma meet, break, and then reconnect, converting the huge amounts of energy stored in magnetic fields into kinetic and thermal energy. In Magnetic Reconnection, Masaaki Yamada offers an illuminating synthesis of modern research and advances on this important topic. Magnetic reconnection produces such phenomena as solar flares and the northern lights, and occurs in nuclear fusion devices. A better understanding of this crucial cosmic activity is essential to comprehending the universe and varied technological applications, such as satellite communications. Most of our knowledge of magnetic reconnection comes from theoretical and computational models and laboratory experiments, but space missions launched in recent years have added up-close observation and measurements to researchers’ tools. Describing the fundamental physics of magnetic reconnection, Yamada connects the theory with the latest results from laboratory experiments and space-based observations, including the Magnetic Reconnection Experiment (MRX) and the Magnetospheric Multiscale (MMS) Mission. He concludes by considering outstanding problems and laying out a road map for future research.Aimed at advanced graduate students and researchers in plasma astrophysics, solar physics, and space physics, Magnetic Reconnection provides cutting-edge information vital area of scientific investigation.

Keywords

Magnetic reconnection. --- SCIENCE / Physics / Magnetism. --- Acceleration. --- Accretion disk. --- Ampere. --- Annihilation. --- Astrophysical plasma. --- Astrophysics. --- Bremsstrahlung. --- Collision frequency. --- Collisionality. --- Coronal loop. --- Coronal mass ejection. --- Coulomb collision. --- Current density. --- Current sheet. --- Cyclotron. --- Debye length. --- Diffusion layer. --- Dissipation. --- Drift velocity. --- Dynamo theory. --- Electric field. --- Electrical resistivity and conductivity. --- Electron temperature. --- Electrostatics. --- Energy transformation. --- Experimental physics. --- Fermi acceleration. --- Feynman diagram. --- Field effect (semiconductor). --- Field line. --- Fine structure. --- Flux tube. --- Fusion power. --- Gauge theory. --- Gyroradius. --- Hall effect. --- Inductance. --- Induction equation. --- Instability. --- Interferometry. --- Ion acoustic wave. --- Ionization. --- Kinetic theory of gases. --- Kink instability. --- Landau damping. --- Langmuir probe. --- Length scale. --- Lorentz force. --- Madison Symmetric Torus. --- Magnetar. --- Magnetic confinement fusion. --- Magnetic diffusivity. --- Magnetic dipole. --- Magnetic energy. --- Magnetic field. --- Magnetic flux. --- Magnetic helicity. --- Magnetization. --- Magnetohydrodynamics. --- Magnetopause. --- Magnetosheath. --- Magnetosonic wave. --- Magnetosphere. --- Maxwell–Boltzmann distribution. --- Mean free path. --- Momentum transfer. --- Neutral beam injection. --- Nonlinear optics. --- Nuclear fusion. --- Paramagnetism. --- Particle physics. --- Pitch angle (particle motion). --- Plasma (physics). --- Plasma acceleration. --- Plasma oscillation. --- Plasma parameter. --- Plasma parameters. --- Plasma stability. --- Plasmoid. --- Quadrupole. --- Relativistic plasma. --- Reversed field pinch. --- Safety factor (plasma physics). --- Scattering. --- Skin effect. --- Solar flare. --- Spacecraft. --- Spatial scale. --- Spheromak. --- Stark effect. --- Substorm. --- Synchrotron radiation. --- Thermodynamic equilibrium. --- Thomson scattering. --- Tokamak. --- Two-dimensional space. --- Van Allen radiation belt. --- Weibel instability. --- X-ray. --- Annihilation, Magnetic field --- Magnetic field annihilation --- Magnetic field line merging --- Merging, Magnetic field line --- Reconnection, Magnetic --- Reconnection (Astronomy) --- Astrophysics --- Geophysics --- Magnetic fields


Book
Nonequilibrium Phenomena in Strongly Correlated Systems
Authors: --- --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book is devoted to the fundamental aspects of the non-equilibrium statistical mechanics of many-particle systems. The concept of Zubarev’s approach, which generalizes the notion of Gibbs’ ensembles, and introduces a nonequilibrium statistical operator, providing an adequate basis for dealing with strongly correlated systems that are governed by nonperturbative phenomena, such as the formation of bound states, quantum condensates and the instability of the vacuum. Besides a general introduction to the formalism, this book contains contributions devoted to the applications of Zubarev’s method to the solution of modern problems in different fields of physics: transport theory, hydrodynamics, high-energy physics, quark-gluon plasma and hadron production in heavy-ion collisions. The book provides valuable information for researchers and students in these fields, requiring powerful concepts to solve fundamental problems of non-equilibrium phenomena in strongly

Keywords

Research & information: general --- relativistic fluid dynamics --- statistical operator --- non-equilibrium states --- transport coefficients --- correlation functions --- open quantum system --- master equation --- non-equilibrium statistical operator --- relevant statistical operator --- quasi-temperature --- dynamic correlations --- QCD matter --- phase transition --- critical point --- nonequilibrium thermo-field dynamics --- kinetics --- hydrodynamics --- kinetic equations --- bound states --- quark-gluon plasma --- out-of-equilibrium quantum field theory --- dimensional renormalization --- finite-time-path formalism --- Boltzmann equation --- gluon saturation --- pion enhancement --- ALICE --- LHC --- thermalization --- hadronization --- Gibbs equilibrium statistical mechanics --- Bogoliubov’s quasi-averages --- pressure fluctuations --- relativistic ideal gas --- kinetic theory --- particle production --- Schwinger effect --- Zitterbewegung --- low density approximation --- quantum statistical mechanics --- relativistic hydrodynamics --- Kubo formulae --- graphene --- dynamic critical phenomena --- high-field and nonlinear effects --- QCD --- gluons --- Bose-Einstein condensate --- Fokker-Planck equation --- relaxation time approximation --- linear response theory --- permittivity, dynamical conductivity, absorption coefficient, dynamical collision frequency --- ordered lattice, disordered lattice --- Umklapp process --- interband transitions --- finite temperature field theory --- path integrals --- quantum fields in curved spacetime --- symmetries --- quantum anomalies --- irreversibility --- entropy --- electrical conductivity --- Zubarev operator --- Unruh effect --- acceleration --- Zubarev formalism --- pion chemical potential


Book
Nonequilibrium Phenomena in Strongly Correlated Systems
Authors: --- --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book is devoted to the fundamental aspects of the non-equilibrium statistical mechanics of many-particle systems. The concept of Zubarev’s approach, which generalizes the notion of Gibbs’ ensembles, and introduces a nonequilibrium statistical operator, providing an adequate basis for dealing with strongly correlated systems that are governed by nonperturbative phenomena, such as the formation of bound states, quantum condensates and the instability of the vacuum. Besides a general introduction to the formalism, this book contains contributions devoted to the applications of Zubarev’s method to the solution of modern problems in different fields of physics: transport theory, hydrodynamics, high-energy physics, quark-gluon plasma and hadron production in heavy-ion collisions. The book provides valuable information for researchers and students in these fields, requiring powerful concepts to solve fundamental problems of non-equilibrium phenomena in strongly

Keywords

relativistic fluid dynamics --- statistical operator --- non-equilibrium states --- transport coefficients --- correlation functions --- open quantum system --- master equation --- non-equilibrium statistical operator --- relevant statistical operator --- quasi-temperature --- dynamic correlations --- QCD matter --- phase transition --- critical point --- nonequilibrium thermo-field dynamics --- kinetics --- hydrodynamics --- kinetic equations --- bound states --- quark-gluon plasma --- out-of-equilibrium quantum field theory --- dimensional renormalization --- finite-time-path formalism --- Boltzmann equation --- gluon saturation --- pion enhancement --- ALICE --- LHC --- thermalization --- hadronization --- Gibbs equilibrium statistical mechanics --- Bogoliubov’s quasi-averages --- pressure fluctuations --- relativistic ideal gas --- kinetic theory --- particle production --- Schwinger effect --- Zitterbewegung --- low density approximation --- quantum statistical mechanics --- relativistic hydrodynamics --- Kubo formulae --- graphene --- dynamic critical phenomena --- high-field and nonlinear effects --- QCD --- gluons --- Bose-Einstein condensate --- Fokker-Planck equation --- relaxation time approximation --- linear response theory --- permittivity, dynamical conductivity, absorption coefficient, dynamical collision frequency --- ordered lattice, disordered lattice --- Umklapp process --- interband transitions --- finite temperature field theory --- path integrals --- quantum fields in curved spacetime --- symmetries --- quantum anomalies --- irreversibility --- entropy --- electrical conductivity --- Zubarev operator --- Unruh effect --- acceleration --- Zubarev formalism --- pion chemical potential

Listing 1 - 4 of 4
Sort by