Narrow your search
Listing 1 - 10 of 10
Sort by

Book
Data-based radiation oncology : design of clinical trials
Authors: --- --- --- --- --- et al.
Year: 2018 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

In radiation oncology as in many other specialties clinical trials are essential to investigate new therapy approaches. Usually, preparation for a prospective clinical trial is extremely time consuming until ethics approval is obtained. To test a new treatment usually many years pass before it can be implemented in the routine care. During that time, already new interventions emerge, new drugs appear on the market, technical & physical innovations are being implemented, novel biology driven concepts are translated into clinical approaches while we are still investigating the ones from years ago. Another problem is associated with molecular diagnostics and the growing amount of tumor specific biomarkers which allows for a better stratification of patient subgroups. On the other side, this may result in a much longer time for patient recruiting and consequently in larger multicenter trials. Moreover, all of the relevant data must be readily available for treatment decision making, treatment as well as follow-up, and ultimately for trial evaluation. This challenges even more for agreed standards in data acquisition, quality and management. How could we change the way currently clinical trials are performed in a way they are safe and ethically justifiable and speed up the initiation process, so we can provide new and better treatments faster for our patients? Further, while we rely on various quantitative information handling distributed, large heterogeneous amounts of data efficiently is very important. Thus data management becomes a strong focus. A good infrastructure helps to plan, tailor and conduct clinical trials in a way they are easy and quickly analyzable. In this research topic we want to discuss new ideas for intelligent trial designs and concepts for data management.


Book
Leitfaden zum Datenschutz in medizinischen Forschungsprojekten.
Authors: --- --- ---
ISBN: 3954662957 Year: 2014 Publisher: Berlin MWV Medizinisch Wissenschaftliche Verlagsgeschellschaft

Loading...
Export citation

Choose an application

Bookmark

Abstract

The trust of patients and test subjects is an indispensable prerequisite for the success of medical research projects that cannot be carried out without the collection, long-term storage and analysis of clinical data and samples. Medical research today mainly works in networks in increasingly larger research networks. Accordingly, the importance of data protection and data security continues to increase. The TMF published generic data protection concepts for medical research associations in 2003 for the first time. On this basis, numerous research projects were able to develop and coordinate their data protection concepts more quickly. The experience gained has been incorporated into the fundamental revision of the generic concepts. The new concept of the complexity of medical research processes takes account of this with a modular structure and was also embedded in a comprehensive guideline.


Book
ECG Imaging of Ventricular Activity in Clinical Applications
Author:
ISBN: 1000046918 3731503743 Year: 2015 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

ECG imaging was performed in humans to reconstruct ventricular activation patterns and localize their excitation origins. The precision of the non-invasive reconstructions was evaluated against invasive measurements and found to be in line with the state-of-the-art literature. Statistics were produced for various excitation origins and reveal the beat-to-beat robustness of the imaging method.


Book
Data-based radiation oncology : design of clinical trials
Authors: --- --- --- --- --- et al.
Year: 2018 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

In radiation oncology as in many other specialties clinical trials are essential to investigate new therapy approaches. Usually, preparation for a prospective clinical trial is extremely time consuming until ethics approval is obtained. To test a new treatment usually many years pass before it can be implemented in the routine care. During that time, already new interventions emerge, new drugs appear on the market, technical & physical innovations are being implemented, novel biology driven concepts are translated into clinical approaches while we are still investigating the ones from years ago. Another problem is associated with molecular diagnostics and the growing amount of tumor specific biomarkers which allows for a better stratification of patient subgroups. On the other side, this may result in a much longer time for patient recruiting and consequently in larger multicenter trials. Moreover, all of the relevant data must be readily available for treatment decision making, treatment as well as follow-up, and ultimately for trial evaluation. This challenges even more for agreed standards in data acquisition, quality and management. How could we change the way currently clinical trials are performed in a way they are safe and ethically justifiable and speed up the initiation process, so we can provide new and better treatments faster for our patients? Further, while we rely on various quantitative information handling distributed, large heterogeneous amounts of data efficiently is very important. Thus data management becomes a strong focus. A good infrastructure helps to plan, tailor and conduct clinical trials in a way they are easy and quickly analyzable. In this research topic we want to discuss new ideas for intelligent trial designs and concepts for data management.


Book
Data-based radiation oncology : design of clinical trials
Authors: --- --- --- --- --- et al.
Year: 2018 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

In radiation oncology as in many other specialties clinical trials are essential to investigate new therapy approaches. Usually, preparation for a prospective clinical trial is extremely time consuming until ethics approval is obtained. To test a new treatment usually many years pass before it can be implemented in the routine care. During that time, already new interventions emerge, new drugs appear on the market, technical & physical innovations are being implemented, novel biology driven concepts are translated into clinical approaches while we are still investigating the ones from years ago. Another problem is associated with molecular diagnostics and the growing amount of tumor specific biomarkers which allows for a better stratification of patient subgroups. On the other side, this may result in a much longer time for patient recruiting and consequently in larger multicenter trials. Moreover, all of the relevant data must be readily available for treatment decision making, treatment as well as follow-up, and ultimately for trial evaluation. This challenges even more for agreed standards in data acquisition, quality and management. How could we change the way currently clinical trials are performed in a way they are safe and ethically justifiable and speed up the initiation process, so we can provide new and better treatments faster for our patients? Further, while we rely on various quantitative information handling distributed, large heterogeneous amounts of data efficiently is very important. Thus data management becomes a strong focus. A good infrastructure helps to plan, tailor and conduct clinical trials in a way they are easy and quickly analyzable. In this research topic we want to discuss new ideas for intelligent trial designs and concepts for data management.


Book
Sémiologie clinique
Authors: --- ---
ISBN: 2846783284 9782846783286 Year: 2023 Publisher: Paris: Med-Line,

Loading...
Export citation

Choose an application

Bookmark

Abstract

L’ouvrage de Sémiologie clinique réalisé par le Collège National des Enseignants de Médecine Interne (CEMI), sous l’égide de la Société Nationale Française de Médecine Interne (SNFMI). – Toute la méthodologie de l’examen clinique. – Un guide pratique destiné avant tout aux étudiants en 1er et 2e cycles des études de médecine, mais aussi aux médecins en exercice. – Un ouvrage répondant aux exigences de la Réforme du 2e cycle des études médicales (R2C), qui accorde une place centrale à l’enseignement de la sémiologie. – Les situations de départ en lien avec les différents objectifs de connaissances de la R2C, à connaître pour la préparation des Épreuves Dématérialisées Nationales (EDN) et des épreuves d’Examens Cliniques Objectifs et Structurés (ECOS) nationaux. – Une iconographie abondante, avec de très nombreux schémas et des photographies de patients, pour faciliter l’apprentissage.


Book
Current Trends and Future Directions in Prosthetic and Implant Dentistry in the Digital Era
Authors: ---
ISBN: 3036560505 3036560491 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Advancements in digital technologies are reshaping the world of dentistry, from prosthodontics to implant dentistry. Intraoral scanners, facial scanners, 3D printers, and milling machines have revolutionized the clinical approach and operative workflow in daily practice. However, digital dentistry brings several challenges to clinicians due to the rapid evolution of new technologies and the lack of evidence-based guidelines for their correct use. The aim of this Special Issue is to cover the latest advances in the development and application of digital technologies in prosthetic and implant dentistry. We wish to provide both clinicians and researchers with a comprehensive and up-to-date source of information on current trends, limitations, and potential future applications of digital technologies in daily clinical practice.


Book
Osseointegrated Oral implants : Mechanisms of Implant Anchorage, Threats and Long-Term Survival Rates
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the past, osseointegration was regarded to be a mode of implant anchorage that simulated a simple wound healing phenomenon. Today, we have evidence that osseointegration is, in fact, a foreign body reaction that involves an immunologically derived bony demarcation of an implant to shield it off from the tissues. Marginal bone resorption around an oral implant cannot be properly understood without realizing the foreign body nature of the implant itself. Whereas the immunological response as such is positive for implant longevity, adverse immunological reactions may cause marginal bone loss in combination with combined factors. Combined factors include the hardware, clinical handling as well as patient characteristics that, even if each one of these factors only produce subliminal trauma, when acting together they may result in loss of marginal bone. The role of bacteria in the process of marginal bone loss is smaller than previously believed due to combined defense mechanisms of inflammation and immunological reactions, but if the defense is failing we may see bacterially induced marginal bone loss as well. However, problems with loss of marginal bone threatening implant survival remains relatively uncommon; we have today 10 years of clinical documentation of five different types of implant displaying a failure rate in the range of only 1 to 4 %.

Keywords

Medicine --- osseointegration --- dental implant --- peri-implantitis --- ligature-induced peri-implantitis --- aseptic loosening --- systematic review --- immune system --- biomaterials --- foreign body reaction --- in vivo study --- oral implants --- marginal bone loss --- immunomodulation --- mechanotransduction --- Crestal bone loss --- osseosufficiency --- osseoseparation --- photoacoustic ultrasound --- brain–bone axis --- overloading --- radiography --- CBCT (cone beam computerized tomography) --- osteogenesis --- osteotomy --- bone healing --- bone chips --- drilling tool design --- fused deposition modeling --- polyether ether ketone --- biocomposite --- orthopedic implant --- oral implant --- mechanical properties --- wettability --- topography --- biocompatibility --- cell adhesion --- peri-implant endosseous healing --- dental implantation --- alveolar bone loss --- alveolar bone remodeling/regeneration --- bone biology --- finite element analysis (FEA) --- biomechanics --- cell plasticity --- dental implants --- electron microscopy --- scanning transmission electron microscopy --- bone-implant interface --- bone loss --- overdenture --- implant survival --- implant surface --- soft tissue --- split-mouth design --- oral health-related quality of life --- patient-reported outcome measures --- biomaterial --- bone --- immune --- implant --- healing --- titanium --- PEEK --- Cu --- micro-RNA --- microarray --- predictive biomarker --- epigenomics --- mucositis --- diagnosis --- over-treatment --- iatrogenic damage --- abutment height --- subcrestal implants --- implant insertion depth --- vertical mucosal thickness --- biological width --- implant installation --- anchorage technique --- histology --- intraosseous temperature --- finite element model --- ligature induced peri-implantitis --- arthroplasty --- replacement --- hip --- hypersensitivity --- contact --- allergy and immunology --- cytokines --- Interleukin-8 --- surface properties --- materials testing --- implant contamination --- scanning electron microscopy --- energy-dispersive X-ray spectrometry --- convergence --- clinical study --- biofilm --- infection --- perio-prosthetic joint infection --- periimplantitis --- electrolytic cleaning --- n/a --- zirconia --- insertion --- bone–implant interface --- heat --- bone damage --- early loss --- augmentation --- air flow --- re-osseointegration --- classification of bone defects --- dog study --- brain-bone axis


Book
Osseointegrated Oral implants : Mechanisms of Implant Anchorage, Threats and Long-Term Survival Rates
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the past, osseointegration was regarded to be a mode of implant anchorage that simulated a simple wound healing phenomenon. Today, we have evidence that osseointegration is, in fact, a foreign body reaction that involves an immunologically derived bony demarcation of an implant to shield it off from the tissues. Marginal bone resorption around an oral implant cannot be properly understood without realizing the foreign body nature of the implant itself. Whereas the immunological response as such is positive for implant longevity, adverse immunological reactions may cause marginal bone loss in combination with combined factors. Combined factors include the hardware, clinical handling as well as patient characteristics that, even if each one of these factors only produce subliminal trauma, when acting together they may result in loss of marginal bone. The role of bacteria in the process of marginal bone loss is smaller than previously believed due to combined defense mechanisms of inflammation and immunological reactions, but if the defense is failing we may see bacterially induced marginal bone loss as well. However, problems with loss of marginal bone threatening implant survival remains relatively uncommon; we have today 10 years of clinical documentation of five different types of implant displaying a failure rate in the range of only 1 to 4 %.

Keywords

osseointegration --- dental implant --- peri-implantitis --- ligature-induced peri-implantitis --- aseptic loosening --- systematic review --- immune system --- biomaterials --- foreign body reaction --- in vivo study --- oral implants --- marginal bone loss --- immunomodulation --- mechanotransduction --- Crestal bone loss --- osseosufficiency --- osseoseparation --- photoacoustic ultrasound --- brain–bone axis --- overloading --- radiography --- CBCT (cone beam computerized tomography) --- osteogenesis --- osteotomy --- bone healing --- bone chips --- drilling tool design --- fused deposition modeling --- polyether ether ketone --- biocomposite --- orthopedic implant --- oral implant --- mechanical properties --- wettability --- topography --- biocompatibility --- cell adhesion --- peri-implant endosseous healing --- dental implantation --- alveolar bone loss --- alveolar bone remodeling/regeneration --- bone biology --- finite element analysis (FEA) --- biomechanics --- cell plasticity --- dental implants --- electron microscopy --- scanning transmission electron microscopy --- bone-implant interface --- bone loss --- overdenture --- implant survival --- implant surface --- soft tissue --- split-mouth design --- oral health-related quality of life --- patient-reported outcome measures --- biomaterial --- bone --- immune --- implant --- healing --- titanium --- PEEK --- Cu --- micro-RNA --- microarray --- predictive biomarker --- epigenomics --- mucositis --- diagnosis --- over-treatment --- iatrogenic damage --- abutment height --- subcrestal implants --- implant insertion depth --- vertical mucosal thickness --- biological width --- implant installation --- anchorage technique --- histology --- intraosseous temperature --- finite element model --- ligature induced peri-implantitis --- arthroplasty --- replacement --- hip --- hypersensitivity --- contact --- allergy and immunology --- cytokines --- Interleukin-8 --- surface properties --- materials testing --- implant contamination --- scanning electron microscopy --- energy-dispersive X-ray spectrometry --- convergence --- clinical study --- biofilm --- infection --- perio-prosthetic joint infection --- periimplantitis --- electrolytic cleaning --- n/a --- zirconia --- insertion --- bone–implant interface --- heat --- bone damage --- early loss --- augmentation --- air flow --- re-osseointegration --- classification of bone defects --- dog study --- brain-bone axis


Book
Osseointegrated Oral implants : Mechanisms of Implant Anchorage, Threats and Long-Term Survival Rates
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the past, osseointegration was regarded to be a mode of implant anchorage that simulated a simple wound healing phenomenon. Today, we have evidence that osseointegration is, in fact, a foreign body reaction that involves an immunologically derived bony demarcation of an implant to shield it off from the tissues. Marginal bone resorption around an oral implant cannot be properly understood without realizing the foreign body nature of the implant itself. Whereas the immunological response as such is positive for implant longevity, adverse immunological reactions may cause marginal bone loss in combination with combined factors. Combined factors include the hardware, clinical handling as well as patient characteristics that, even if each one of these factors only produce subliminal trauma, when acting together they may result in loss of marginal bone. The role of bacteria in the process of marginal bone loss is smaller than previously believed due to combined defense mechanisms of inflammation and immunological reactions, but if the defense is failing we may see bacterially induced marginal bone loss as well. However, problems with loss of marginal bone threatening implant survival remains relatively uncommon; we have today 10 years of clinical documentation of five different types of implant displaying a failure rate in the range of only 1 to 4 %.

Keywords

Medicine --- osseointegration --- dental implant --- peri-implantitis --- ligature-induced peri-implantitis --- aseptic loosening --- systematic review --- immune system --- biomaterials --- foreign body reaction --- in vivo study --- oral implants --- marginal bone loss --- immunomodulation --- mechanotransduction --- Crestal bone loss --- osseosufficiency --- osseoseparation --- photoacoustic ultrasound --- brain-bone axis --- overloading --- radiography --- CBCT (cone beam computerized tomography) --- osteogenesis --- osteotomy --- bone healing --- bone chips --- drilling tool design --- fused deposition modeling --- polyether ether ketone --- biocomposite --- orthopedic implant --- oral implant --- mechanical properties --- wettability --- topography --- biocompatibility --- cell adhesion --- peri-implant endosseous healing --- dental implantation --- alveolar bone loss --- alveolar bone remodeling/regeneration --- bone biology --- finite element analysis (FEA) --- biomechanics --- cell plasticity --- dental implants --- electron microscopy --- scanning transmission electron microscopy --- bone-implant interface --- bone loss --- overdenture --- implant survival --- implant surface --- soft tissue --- split-mouth design --- oral health-related quality of life --- patient-reported outcome measures --- biomaterial --- bone --- immune --- implant --- healing --- titanium --- PEEK --- Cu --- micro-RNA --- microarray --- predictive biomarker --- epigenomics --- mucositis --- diagnosis --- over-treatment --- iatrogenic damage --- abutment height --- subcrestal implants --- implant insertion depth --- vertical mucosal thickness --- biological width --- implant installation --- anchorage technique --- histology --- intraosseous temperature --- finite element model --- ligature induced peri-implantitis --- arthroplasty --- replacement --- hip --- hypersensitivity --- contact --- allergy and immunology --- cytokines --- Interleukin-8 --- surface properties --- materials testing --- implant contamination --- scanning electron microscopy --- energy-dispersive X-ray spectrometry --- convergence --- clinical study --- biofilm --- infection --- perio-prosthetic joint infection --- periimplantitis --- electrolytic cleaning --- zirconia --- insertion --- bone-implant interface --- heat --- bone damage --- early loss --- augmentation --- air flow --- re-osseointegration --- classification of bone defects --- dog study --- osseointegration --- dental implant --- peri-implantitis --- ligature-induced peri-implantitis --- aseptic loosening --- systematic review --- immune system --- biomaterials --- foreign body reaction --- in vivo study --- oral implants --- marginal bone loss --- immunomodulation --- mechanotransduction --- Crestal bone loss --- osseosufficiency --- osseoseparation --- photoacoustic ultrasound --- brain-bone axis --- overloading --- radiography --- CBCT (cone beam computerized tomography) --- osteogenesis --- osteotomy --- bone healing --- bone chips --- drilling tool design --- fused deposition modeling --- polyether ether ketone --- biocomposite --- orthopedic implant --- oral implant --- mechanical properties --- wettability --- topography --- biocompatibility --- cell adhesion --- peri-implant endosseous healing --- dental implantation --- alveolar bone loss --- alveolar bone remodeling/regeneration --- bone biology --- finite element analysis (FEA) --- biomechanics --- cell plasticity --- dental implants --- electron microscopy --- scanning transmission electron microscopy --- bone-implant interface --- bone loss --- overdenture --- implant survival --- implant surface --- soft tissue --- split-mouth design --- oral health-related quality of life --- patient-reported outcome measures --- biomaterial --- bone --- immune --- implant --- healing --- titanium --- PEEK --- Cu --- micro-RNA --- microarray --- predictive biomarker --- epigenomics --- mucositis --- diagnosis --- over-treatment --- iatrogenic damage --- abutment height --- subcrestal implants --- implant insertion depth --- vertical mucosal thickness --- biological width --- implant installation --- anchorage technique --- histology --- intraosseous temperature --- finite element model --- ligature induced peri-implantitis --- arthroplasty --- replacement --- hip --- hypersensitivity --- contact --- allergy and immunology --- cytokines --- Interleukin-8 --- surface properties --- materials testing --- implant contamination --- scanning electron microscopy --- energy-dispersive X-ray spectrometry --- convergence --- clinical study --- biofilm --- infection --- perio-prosthetic joint infection --- periimplantitis --- electrolytic cleaning --- zirconia --- insertion --- bone-implant interface --- heat --- bone damage --- early loss --- augmentation --- air flow --- re-osseointegration --- classification of bone defects --- dog study

Listing 1 - 10 of 10
Sort by