Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Mathematics. --- Teoria de l'homotopia --- Math --- Science --- Deformacions contínues --- Homotopia --- Teoria homotòpica --- Topologia --- Transformacions (Matemàtica) --- Cirurgia (Topologia) --- Equivalències d'homotopia --- Grups d'homotopia --- Teoria de la forma (Topologia) --- Teoria de la localització
Choose an application
Teoria de l'homotopia --- Topologia algebraica --- Topologia --- Àlgebres de Hopf --- Grau topològic --- Grups fonamentals (Matemàtica) --- K-teoria --- Homologia --- Successions espectrals (Matemàtica) --- Teoria dels feixos --- Topologia de baixa dimensió --- Transformacions (Matemàtica) --- Cirurgia (Topologia) --- Equivalències d'homotopia --- Grups d'homotopia --- Teoria de la forma (Topologia) --- Teoria de la localització --- Deformacions contínues --- Homotopia --- Teoria homotòpica --- Algebraic topology. --- Homotopy theory --- History. --- Topology --- Deformations, Continuous --- Topologia algebraica.
Choose an application
This open access book offers a self-contained introduction to the homotopy theory of simplicial and dendroidal sets and spaces. These are essential for the study of categories, operads, and algebraic structure up to coherent homotopy. The dendroidal theory combines the combinatorics of trees with the theory of Quillen model categories. Dendroidal sets are a natural generalization of simplicial sets from the point of view of operads. In this book, the simplicial approach to higher category theory is generalized to a dendroidal approach to higher operad theory. This dendroidal theory of higher operads is carefully developed in this book. The book also provides an original account of the more established simplicial approach to infinity-categories, which is developed in parallel to the dendroidal theory to emphasize the similarities and differences. Simplicial and Dendroidal Homotopy Theory is a complete introduction, carefully written with the beginning researcher in mind and ideally suited for seminars and courses. It can also be used as a standalone introduction to simplicial homotopy theory and to the theory of infinity-categories, or a standalone introduction to the theory of Quillen model categories and Bousfield localization.
Homotopy theory. --- Deformations, Continuous --- Topology --- Teoria de l'homotopia --- Deformacions contínues --- Homotopia --- Teoria homotòpica --- Topologia --- Transformacions (Matemàtica) --- Cirurgia (Topologia) --- Equivalències d'homotopia --- Grups d'homotopia --- Teoria de la forma (Topologia) --- Teoria de la localització --- Operads --- infinity-operad --- infinity-category --- simplicial set --- dendroidal set --- simplicial space --- simplicial operad --- model categories --- Bousfield localization --- Boardman-Vogt --- higher algebra
Choose an application
Teoria de l'homotopia --- Geometria algebraica aritmètica --- Geometria algèbrica aritmètica --- Geometria diofàntica --- Geometria algebraica --- Teoria de nombres --- Punts racionals (Geometria) --- Varietats de Shimura --- Deformacions contínues --- Homotopia --- Teoria homotòpica --- Topologia --- Transformacions (Matemàtica) --- Cirurgia (Topologia) --- Equivalències d'homotopia --- Grups d'homotopia --- Teoria de la forma (Topologia) --- Teoria de la localització --- Arithmetical algebraic geometry --- Homotopy theory --- Algebraic geometry, Arithmetical --- Arithmetic algebraic geometry --- Diophantine geometry --- Geometry, Arithmetical algebraic --- Geometry, Diophantine --- Number theory
Listing 1 - 4 of 4 |
Sort by
|