Narrow your search
Listing 1 - 9 of 9
Sort by

Book
Integrated RF/optical interplanetary networking preliminary explorations and empirical results
Authors: --- ---
Year: 2012 Publisher: Cleveland, Ohio : National Aeronautics and Space Administration, Glenn Research Center,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Processing issues for preliminary melts of the intermetallic compound 60-NITINOL
Authors: --- --- ---
Year: 2012 Publisher: Cleveland, Ohio : National Aeronautics and Space Administration, Glenn Research Center,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Charpy impact energy and microindentation hardness of 60-NITINOL
Authors: ---
Year: 2012 Publisher: Cleveland, Ohio : National Aeronautics and Space Administration, Glenn Research Center,

Loading...
Export citation

Choose an application

Bookmark

Abstract

From Charpy to present impact testing
Authors: --- ---
ISBN: 1281046078 9786611046071 008052897X 0080439705 9780080439709 9780080528977 Year: 2002 Volume: 30 Publisher: London : Elsevier,

Loading...
Export citation

Choose an application

Bookmark

Abstract

From Charpy to Present Impact Testing contains 52 peer-reviewed papers selected from those presented at the Charpy Centenary Conference held in Poitiers, France, 2-5 October 2001. The name of Charpy remains associated with impact testing on notched specimens. At a time when many steam engines exploded, engineers were preoccupied with studying the resistance of steels to impact loading. The Charpy test has provided invaluable indications on the impact properties of materials. It revealed the brittle ductile transition of ferritic steels. The Charpy test is a


Book
Dislocation Mechanics of Metal Plasticity and Fracturing
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The modern understanding of metal plasticity and fracturing began about 100 years ago, with pioneering work; first, on crack-induced fracturing by Griffith and, second, with the invention of dislocation-enhanced crystal plasticity by Taylor, Orowan and Polanyi. The modern counterparts are fracture mechanics, as invented by Irwin, and dislocation mechanics, as initiated in pioneering work by Cottrell. No less important was the breakthrough development of optical characterization of sectioned polycrystalline metal microstructures started by Sorby in the late 19th century and leading eventually to modern optical, x-ray and electron microscopy methods for assessments of crystal fracture surfaces, via fractography, and particularly of x-ray and electron microscopy techniques applied to quantitative characterizations of internal dislocation behaviors. A major current effort is to match computational simulations of metal deformation/fracturing behaviors with experimental measurements made over extended ranges of microstructures and over varying external conditions of stress-state, temperature and loading rate. The relation of such simulations to the development of constitutive equations for a hoped-for predictive description of material deformation/fracturing behaviors is an active topic of research. The present collection of articles provides a broad sampling of research accomplishments on the two subjects.


Book
Dislocation Mechanics of Metal Plasticity and Fracturing
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The modern understanding of metal plasticity and fracturing began about 100 years ago, with pioneering work; first, on crack-induced fracturing by Griffith and, second, with the invention of dislocation-enhanced crystal plasticity by Taylor, Orowan and Polanyi. The modern counterparts are fracture mechanics, as invented by Irwin, and dislocation mechanics, as initiated in pioneering work by Cottrell. No less important was the breakthrough development of optical characterization of sectioned polycrystalline metal microstructures started by Sorby in the late 19th century and leading eventually to modern optical, x-ray and electron microscopy methods for assessments of crystal fracture surfaces, via fractography, and particularly of x-ray and electron microscopy techniques applied to quantitative characterizations of internal dislocation behaviors. A major current effort is to match computational simulations of metal deformation/fracturing behaviors with experimental measurements made over extended ranges of microstructures and over varying external conditions of stress-state, temperature and loading rate. The relation of such simulations to the development of constitutive equations for a hoped-for predictive description of material deformation/fracturing behaviors is an active topic of research. The present collection of articles provides a broad sampling of research accomplishments on the two subjects.


Book
Fatigue and Fracture of Traditional and Advanced Structural Alloys
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The fatigue behavior of traditional and advanced materials is a very relevant topic in different strategic applications impacting and affecting our daily lives. The present Special Issue invites papers to update readers on the state of the art on this important topic. Both review and original manuscripts are welcome. Special attention will be dedicated to innovative materials and innovative manufacturing processes or post-treatments able to improve the fatigue life and reliability of a structural component. Scale effect will be also fully treated focusing on different applications and multiscale approaches aimed at understanding structural integrity under cyclic loadings. This state of the art perspective will help engineers, designers and people from the academy gain an updated view on this very challenging topic which is nowadays very important due to the advances in manufacturing technologies that allow complex new materials to be fabricated.

Keywords

History of engineering & technology --- elevated temperature --- low cycle fatigue --- damage accumulation --- uniaxial and multiaxial loading --- precipitates --- fatigue crack growth --- creep aging --- artificial aging --- fatigue --- nickel-based single crystal superalloy --- life modeling --- resolved shear stress --- railway axle --- semi-elliptical crack --- residual stresses --- friction stir welding --- residual stress --- weak area --- finite element simulation --- life prediction --- high temperature --- 12Cr1MoV steel --- mixed salt environments --- corrosion fatigue --- heat pipe failure --- critical plane model --- multiaxial fatigue --- non–proportional loading --- 316 stainless steel --- 304 stainless steel --- fracture toughness --- coarse-grained heat affected zone (CGHAZ) --- X80 pipeline steels --- weld thermal simulation --- finite element analysis (FEA) --- fatigue performance --- rounded welding region --- finite element modeling (FEM) --- structure optimization --- reinforcing plate --- isotropic hardening --- crack tip opening displacement --- CTOD --- crack closure --- metal matrix composites --- powder metallurgy --- Fe/B4C composites --- iron boride phases (Fe2B/FeB) --- Charpy impact test --- single crystal superalloy --- recrystallization --- fatigue small crack --- slip --- in situ SEM --- ultrasonic cyclic testing --- frequency effect --- control type effect --- strain rate effect --- 50CrMo4 --- SAE 4150 --- high cycle fatigue --- very high cycle fatigue --- statistical analyses --- n/a --- non-proportional loading


Book
Fatigue and Fracture of Traditional and Advanced Structural Alloys
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The fatigue behavior of traditional and advanced materials is a very relevant topic in different strategic applications impacting and affecting our daily lives. The present Special Issue invites papers to update readers on the state of the art on this important topic. Both review and original manuscripts are welcome. Special attention will be dedicated to innovative materials and innovative manufacturing processes or post-treatments able to improve the fatigue life and reliability of a structural component. Scale effect will be also fully treated focusing on different applications and multiscale approaches aimed at understanding structural integrity under cyclic loadings. This state of the art perspective will help engineers, designers and people from the academy gain an updated view on this very challenging topic which is nowadays very important due to the advances in manufacturing technologies that allow complex new materials to be fabricated.

Keywords

History of engineering & technology --- elevated temperature --- low cycle fatigue --- damage accumulation --- uniaxial and multiaxial loading --- precipitates --- fatigue crack growth --- creep aging --- artificial aging --- fatigue --- nickel-based single crystal superalloy --- life modeling --- resolved shear stress --- railway axle --- semi-elliptical crack --- residual stresses --- friction stir welding --- residual stress --- weak area --- finite element simulation --- life prediction --- high temperature --- 12Cr1MoV steel --- mixed salt environments --- corrosion fatigue --- heat pipe failure --- critical plane model --- multiaxial fatigue --- non–proportional loading --- 316 stainless steel --- 304 stainless steel --- fracture toughness --- coarse-grained heat affected zone (CGHAZ) --- X80 pipeline steels --- weld thermal simulation --- finite element analysis (FEA) --- fatigue performance --- rounded welding region --- finite element modeling (FEM) --- structure optimization --- reinforcing plate --- isotropic hardening --- crack tip opening displacement --- CTOD --- crack closure --- metal matrix composites --- powder metallurgy --- Fe/B4C composites --- iron boride phases (Fe2B/FeB) --- Charpy impact test --- single crystal superalloy --- recrystallization --- fatigue small crack --- slip --- in situ SEM --- ultrasonic cyclic testing --- frequency effect --- control type effect --- strain rate effect --- 50CrMo4 --- SAE 4150 --- high cycle fatigue --- very high cycle fatigue --- statistical analyses --- n/a --- non-proportional loading


Book
Fatigue and Fracture of Traditional and Advanced Structural Alloys
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The fatigue behavior of traditional and advanced materials is a very relevant topic in different strategic applications impacting and affecting our daily lives. The present Special Issue invites papers to update readers on the state of the art on this important topic. Both review and original manuscripts are welcome. Special attention will be dedicated to innovative materials and innovative manufacturing processes or post-treatments able to improve the fatigue life and reliability of a structural component. Scale effect will be also fully treated focusing on different applications and multiscale approaches aimed at understanding structural integrity under cyclic loadings. This state of the art perspective will help engineers, designers and people from the academy gain an updated view on this very challenging topic which is nowadays very important due to the advances in manufacturing technologies that allow complex new materials to be fabricated.

Keywords

elevated temperature --- low cycle fatigue --- damage accumulation --- uniaxial and multiaxial loading --- precipitates --- fatigue crack growth --- creep aging --- artificial aging --- fatigue --- nickel-based single crystal superalloy --- life modeling --- resolved shear stress --- railway axle --- semi-elliptical crack --- residual stresses --- friction stir welding --- residual stress --- weak area --- finite element simulation --- life prediction --- high temperature --- 12Cr1MoV steel --- mixed salt environments --- corrosion fatigue --- heat pipe failure --- critical plane model --- multiaxial fatigue --- non–proportional loading --- 316 stainless steel --- 304 stainless steel --- fracture toughness --- coarse-grained heat affected zone (CGHAZ) --- X80 pipeline steels --- weld thermal simulation --- finite element analysis (FEA) --- fatigue performance --- rounded welding region --- finite element modeling (FEM) --- structure optimization --- reinforcing plate --- isotropic hardening --- crack tip opening displacement --- CTOD --- crack closure --- metal matrix composites --- powder metallurgy --- Fe/B4C composites --- iron boride phases (Fe2B/FeB) --- Charpy impact test --- single crystal superalloy --- recrystallization --- fatigue small crack --- slip --- in situ SEM --- ultrasonic cyclic testing --- frequency effect --- control type effect --- strain rate effect --- 50CrMo4 --- SAE 4150 --- high cycle fatigue --- very high cycle fatigue --- statistical analyses --- n/a --- non-proportional loading

Listing 1 - 9 of 9
Sort by