Narrow your search

Library

KU Leuven (3)

ULiège (3)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

VIVES (2)

VUB (2)

UAntwerpen (1)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2018 (1)

2015 (1)

2014 (1)

2009 (1)

1974 (1)

Listing 1 - 5 of 5
Sort by
Discontinuous groups and Riemann surfaces : proceedings of the 1973 conference at the University of Maryland
Authors: ---
ISBN: 0691081387 1400881641 9780691081380 Year: 1974 Volume: 79 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Study 79 contains a collection of papers presented at the Conference on Discontinuous Groups and Ricmann Surfaces at the University of Maryland, May 21-25, 1973. The papers, by leading authorities, deal mainly with Fuchsian and Kleinian groups, Teichmüller spaces, Jacobian varieties, and quasiconformal mappings. These topics are intertwined, representing a common meeting of algebra, geometry, and analysis.

Keywords

Group theory --- Complex analysis --- Number theory --- RIEMANN SURFACES --- Discontinuous groups --- congresses --- Congresses --- Riemann surfaces --- Congresses. --- Groupes discontinus --- Combinatorial topology --- Functions of complex variables --- Surfaces, Riemann --- Functions --- Abelian variety. --- Adjunction (field theory). --- Affine space. --- Algebraic curve. --- Algebraic structure. --- Analytic function. --- Arithmetic genus. --- Automorphism. --- Bernhard Riemann. --- Boundary (topology). --- Cauchy sequence. --- Cauchy–Schwarz inequality. --- Cayley–Hamilton theorem. --- Closed geodesic. --- Combination. --- Commutative diagram. --- Commutator subgroup. --- Compact Riemann surface. --- Complex dimension. --- Complex manifold. --- Complex multiplication. --- Complex space. --- Complex torus. --- Congruence subgroup. --- Conjugacy class. --- Convex set. --- Cyclic group. --- Degeneracy (mathematics). --- Diagram (category theory). --- Diffeomorphism. --- Differential form. --- Dimension (vector space). --- Disjoint sets. --- E7 (mathematics). --- Endomorphism. --- Equation. --- Equivalence class. --- Euclidean space. --- Existence theorem. --- Existential quantification. --- Finite group. --- Finitely generated group. --- Fuchsian group. --- Fundamental domain. --- Fundamental lemma (Langlands program). --- Fundamental polygon. --- Galois extension. --- Holomorphic function. --- Homeomorphism. --- Homology (mathematics). --- Homomorphism. --- Hurwitz's theorem (number theory). --- Inclusion map. --- Inequality (mathematics). --- Inner automorphism. --- Intersection (set theory). --- Irreducibility (mathematics). --- Isomorphism class. --- Isomorphism theorem. --- Jacobian variety. --- Jordan curve theorem. --- Kleinian group. --- Limit point. --- Mapping class group. --- Metric space. --- Monodromy. --- Monomorphism. --- Möbius transformation. --- Non-Euclidean geometry. --- Orthogonal trajectory. --- Permutation. --- Polynomial. --- Power series. --- Projective variety. --- Quadratic differential. --- Quadric. --- Quasi-projective variety. --- Quasiconformal mapping. --- Quotient space (topology). --- Rectangle. --- Riemann mapping theorem. --- Riemann surface. --- Schwarzian derivative. --- Simply connected space. --- Simultaneous equations. --- Special case. --- Subgroup. --- Subsequence. --- Surjective function. --- Symmetric space. --- Tangent space. --- Teichmüller space. --- Theorem. --- Topological space. --- Topology. --- Uniqueness theorem. --- Unit disk. --- Variable (mathematics). --- Winding number. --- Word problem (mathematics). --- RIEMANN SURFACES - congresses --- Discontinuous groups - Congresses --- Geometrie algebrique --- Fonctions d'une variable complexe --- Surfaces de riemann

Positive Definite Matrices
Author:
ISBN: 1282129740 9786612129742 1400827787 9781400827787 9781282129740 0691129185 9780691129181 6612129743 Year: 2009 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book represents the first synthesis of the considerable body of new research into positive definite matrices. These matrices play the same role in noncommutative analysis as positive real numbers do in classical analysis. They have theoretical and computational uses across a broad spectrum of disciplines, including calculus, electrical engineering, statistics, physics, numerical analysis, quantum information theory, and geometry. Through detailed explanations and an authoritative and inspiring writing style, Rajendra Bhatia carefully develops general techniques that have wide applications in the study of such matrices. Bhatia introduces several key topics in functional analysis, operator theory, harmonic analysis, and differential geometry--all built around the central theme of positive definite matrices. He discusses positive and completely positive linear maps, and presents major theorems with simple and direct proofs. He examines matrix means and their applications, and shows how to use positive definite functions to derive operator inequalities that he and others proved in recent years. He guides the reader through the differential geometry of the manifold of positive definite matrices, and explains recent work on the geometric mean of several matrices. Positive Definite Matrices is an informative and useful reference book for mathematicians and other researchers and practitioners. The numerous exercises and notes at the end of each chapter also make it the ideal textbook for graduate-level courses.

Keywords

Matrices. --- Algebra, Matrix --- Cracovians (Mathematics) --- Matrix algebra --- Matrixes (Algebra) --- Algebra, Abstract --- Algebra, Universal --- Matrices --- 512.64 --- 512.64 Linear and multilinear algebra. Matrix theory --- Linear and multilinear algebra. Matrix theory --- Addition. --- Analytic continuation. --- Arithmetic mean. --- Banach space. --- Binomial theorem. --- Block matrix. --- Bochner's theorem. --- Calculation. --- Cauchy matrix. --- Cauchy–Schwarz inequality. --- Characteristic polynomial. --- Coefficient. --- Commutative property. --- Compact space. --- Completely positive map. --- Complex number. --- Computation. --- Continuous function. --- Convex combination. --- Convex function. --- Convex set. --- Corollary. --- Density matrix. --- Diagonal matrix. --- Differential geometry. --- Eigenvalues and eigenvectors. --- Equation. --- Equivalence relation. --- Existential quantification. --- Extreme point. --- Fourier transform. --- Functional analysis. --- Fundamental theorem. --- G. H. Hardy. --- Gamma function. --- Geometric mean. --- Geometry. --- Hadamard product (matrices). --- Hahn–Banach theorem. --- Harmonic analysis. --- Hermitian matrix. --- Hilbert space. --- Hyperbolic function. --- Infimum and supremum. --- Infinite divisibility (probability). --- Invertible matrix. --- Lecture. --- Linear algebra. --- Linear map. --- Logarithm. --- Logarithmic mean. --- Mathematics. --- Matrix (mathematics). --- Matrix analysis. --- Matrix unit. --- Metric space. --- Monotonic function. --- Natural number. --- Open set. --- Operator algebra. --- Operator system. --- Orthonormal basis. --- Partial trace. --- Positive definiteness. --- Positive element. --- Positive map. --- Positive semidefinite. --- Positive-definite function. --- Positive-definite matrix. --- Probability measure. --- Probability. --- Projection (linear algebra). --- Quantity. --- Quantum computing. --- Quantum information. --- Quantum statistical mechanics. --- Real number. --- Riccati equation. --- Riemannian geometry. --- Riemannian manifold. --- Riesz representation theorem. --- Right half-plane. --- Schur complement. --- Schur's theorem. --- Scientific notation. --- Self-adjoint operator. --- Sign (mathematics). --- Special case. --- Spectral theorem. --- Square root. --- Standard basis. --- Summation. --- Tensor product. --- Theorem. --- Toeplitz matrix. --- Unit vector. --- Unitary matrix. --- Unitary operator. --- Upper half-plane. --- Variable (mathematics).


Book
The Motion of a Surface by Its Mean Curvature. (MN-20)
Author:
ISBN: 9781400867431 1400867436 9780691611518 9780691082042 0691611513 0691639515 Year: 2015 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

Kenneth Brakke studies in general dimensions a dynamic system of surfaces of no inertial mass driven by the force of surface tension and opposed by a frictional force proportional to velocity. He formulates his study in terms of varifold surfaces and uses the methods of geometric measure theory to develop a mathematical description of the motion of a surface by its mean curvature. This mathematical description encompasses, among other subtleties, those of changing geometries and instantaneous mass losses.Originally published in 1978.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Geometric measure theory. --- Surfaces. --- Curvature. --- Measure theory --- Calculus --- Curves --- Surfaces --- Curved surfaces --- Geometry --- Shapes --- Affine transformation. --- Approximation. --- Asymptote. --- Barrier function. --- Besicovitch covering theorem. --- Big O notation. --- Bounded set (topological vector space). --- Boundedness. --- Calculation. --- Cauchy–Schwarz inequality. --- Characteristic function (probability theory). --- Compactness theorem. --- Completing the square. --- Concave function. --- Convex set. --- Convolution. --- Crystal structure. --- Curve. --- Derivative. --- Diameter. --- Differentiable function. --- Differentiable manifold. --- Differential geometry. --- Dimension. --- Domain of a function. --- Dyadic rational. --- Equivalence relation. --- Estimation. --- Euclidean space. --- Existential quantification. --- Exterior (topology). --- First variation. --- Gaussian curvature. --- Geometry. --- Grain boundary. --- Graph of a function. --- Grassmannian. --- Harmonic function. --- Hausdorff measure. --- Heat equation. --- Heat kernel. --- Heat transfer. --- Homotopy. --- Hypersurface. --- Hölder's inequality. --- Infimum and supremum. --- Initial condition. --- Lebesgue measure. --- Lebesgue point. --- Linear space (geometry). --- Lipschitz continuity. --- Mean curvature. --- Melting point. --- Microstructure. --- Monotonic function. --- Natural number. --- Nonparametric statistics. --- Order of integration (calculus). --- Order of integration. --- Order of magnitude. --- Parabolic partial differential equation. --- Paraboloid. --- Partial differential equation. --- Permutation. --- Perpendicular. --- Pointwise. --- Probability. --- Quantity. --- Quotient space (topology). --- Radon measure. --- Regularity theorem. --- Retract. --- Rewriting. --- Riemannian manifold. --- Right angle. --- Second derivative. --- Sectional curvature. --- Semi-continuity. --- Smoothness. --- Subsequence. --- Subset. --- Support (mathematics). --- Tangent space. --- Taylor's theorem. --- Theorem. --- Theory. --- Topology. --- Total curvature. --- Translational symmetry. --- Uniform boundedness. --- Unit circle. --- Unit vector. --- Upper and lower bounds. --- Variable (mathematics). --- Varifold. --- Vector field. --- Weight function. --- Without loss of generality.


Book
How to fall slower than gravity : and other everyday (and not so everyday) uses of mathematics and physical reasoning
Author:
ISBN: 0691185026 Year: 2018 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

An engaging collection of intriguing problems that shows you how to think like a mathematical physicistPaul Nahin is a master at explaining odd phenomena through straightforward mathematics. In this collection of twenty-six intriguing problems, he explores how mathematical physicists think. Always entertaining, the problems range from ancient catapult conundrums to the puzzling physics of a very peculiar kind of glass called NASTYGLASS-and from dodging trucks to why raindrops fall slower than the rate of gravity. The questions raised may seem impossible to answer at first and may require an unexpected twist in reasoning, but sometimes their solutions are surprisingly simple. Nahin's goal, however, is always to guide readers-who will need only to have studied advanced high school math and physics-in expanding their mathematical thinking to make sense of the curiosities of the physical world.The problems are in the first part of the book and the solutions are in the second, so that readers may challenge themselves to solve the questions on their own before looking at the explanations. The problems show how mathematics-including algebra, trigonometry, geometry, and calculus-can be united with physical laws to solve both real and theoretical problems. Historical anecdotes woven throughout the book bring alive the circumstances and people involved in some amazing discoveries and achievements.More than a puzzle book, this work will immerse you in the delights of scientific history while honing your math skills.

Keywords

Mathematics --- Almost surely. --- Ambiguity. --- Antiderivative. --- Approximation error. --- Arthur C. Clarke. --- Binomial coefficient. --- Binomial theorem. --- Birthday problem. --- Calculation. --- Cauchy–Schwarz inequality. --- Center of mass (relativistic). --- Centrifugal force. --- Closed-form expression. --- Coefficient. --- Combination. --- Computational problem. --- Conjecture. --- Continued fraction. --- Contradiction. --- Coprime integers. --- Counterexample. --- Crossover distortion. --- Cubic function. --- Derivative. --- Detonation. --- Diameter. --- Dimensional analysis. --- Dirac delta function. --- Disquisitiones Arithmeticae. --- Dissipation. --- Energy level. --- Enola Gay. --- Equation. --- Error. --- Expected value. --- Fermat's Last Theorem. --- Fictitious force. --- G. H. Hardy. --- Geometry. --- Googol. --- Gravitational constant. --- Gravity. --- Grayscale. --- Harmonic series (mathematics). --- Hypotenuse. --- Instant. --- Integer. --- Inverse-square law. --- Irrational number. --- MATLAB. --- Mass ratio. --- Mathematical joke. --- Mathematical physics. --- Mathematical problem. --- Mathematician. --- Mathematics. --- Mean value theorem. --- Metric system. --- Minicomputer. --- Monte Carlo method. --- Natural number. --- Oliver Heaviside. --- Paul J. Nahin. --- Pauli exclusion principle. --- Periodic function. --- Phase transition. --- Prime factor. --- Prime number. --- Probability theory. --- Probability. --- Projectile. --- Pure mathematics. --- Quadratic equation. --- Quadratic formula. --- Quantity. --- Quantum mechanics. --- Quintic function. --- Random number. --- Random search. --- Random walk. --- Remainder. --- Resistor. --- Richard Feynman. --- Right angle. --- Second derivative. --- Simulation. --- Slant range. --- Small number. --- Special case. --- Square root. --- Summation. --- The Drunkard's Walk. --- Theorem. --- Thermodynamic equilibrium. --- Thought experiment. --- Trepidation (astronomy). --- Uniform distribution (discrete). --- Upper and lower bounds. --- Weightlessness. --- Zero of a function.


Book
Analytic Pseudodifferential Operators for the Heisenberg Group and Local Solvability. (MN-37)
Author:
ISBN: 0691608296 0691636761 1400860733 Year: 2014 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Many of the operators one meets in several complex variables, such as the famous Lewy operator, are not locally solvable. Nevertheless, such an operator L can be thoroughly studied if one can find a suitable relative parametrix--an operator K such that LK is essentially the orthogonal projection onto the range of L. The analysis is by far most decisive if one is able to work in the real analytic, as opposed to the smooth, setting. With this motivation, the author develops an analytic calculus for the Heisenberg group. Features include: simple, explicit formulae for products and adjoints; simple representation-theoretic conditions, analogous to ellipticity, for finding parametrices in the calculus; invariance under analytic contact transformations; regularity with respect to non-isotropic Sobolev and Lipschitz spaces; and preservation of local analyticity. The calculus is suitable for doing analysis on real analytic strictly pseudoconvex CR manifolds. In this context, the main new application is a proof that the Szego projection preserves local analyticity, even in the three-dimensional setting. Relative analytic parametrices are also constructed for the adjoint of the tangential Cauchy-Riemann operator.Originally published in 1990.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Pseudodifferential operators. --- Functions of several complex variables. --- Solvable groups. --- Analytic function. --- Analytic set. --- Associative property. --- Asymptotic expansion. --- Atkinson's theorem. --- Banach space. --- Bilinear map. --- Boundary value problem. --- Bounded function. --- Bounded operator. --- Bump function. --- C space. --- CR manifold. --- Cauchy problem. --- Cauchy's integral formula. --- Cauchy–Schwarz inequality. --- Cayley transform. --- Characteristic function (probability theory). --- Characterization (mathematics). --- Coefficient. --- Cokernel. --- Combinatorics. --- Complex conjugate. --- Complex number. --- Complexification (Lie group). --- Contact geometry. --- Convolution. --- Darboux's theorem (analysis). --- Darboux's theorem. --- Diagram (category theory). --- Diffeomorphism. --- Difference "ient. --- Differential operator. --- Dimension (vector space). --- Dirac delta function. --- Eigenvalues and eigenvectors. --- Elliptic operator. --- Equation. --- Existential quantification. --- Explicit formulae (L-function). --- Factorial. --- Fourier inversion theorem. --- Fourier series. --- Fourier transform. --- Fundamental solution. --- Heisenberg group. --- Hermitian adjoint. --- Hilbert space. --- Hodge theory. --- Hypoelliptic operator. --- Hölder's inequality. --- Implicit function theorem. --- Integral transform. --- Invertible matrix. --- Leibniz integral rule. --- Lie algebra. --- Mathematical induction. --- Mathematical proof. --- Mean value theorem. --- Multinomial theorem. --- Neighbourhood (mathematics). --- Neumann series. --- Nilpotent group. --- Orthogonal transformation. --- Orthonormal basis. --- Oscillatory integral. --- Paley–Wiener theorem. --- Parametrix. --- Parity (mathematics). --- Partial differential equation. --- Partition of unity. --- Plancherel theorem. --- Polynomial. --- Power function. --- Power series. --- Product rule. --- Property B. --- Pseudo-differential operator. --- Pullback (category theory). --- Quadratic form. --- Regularity theorem. --- Riesz transform. --- Schwartz space. --- Scientific notation. --- Self-adjoint operator. --- Self-adjoint. --- Sesquilinear form. --- Several complex variables. --- Singular integral. --- Special case. --- Summation. --- Support (mathematics). --- Symmetrization. --- Theorem. --- Topology. --- Triangle inequality. --- Unbounded operator. --- Union (set theory). --- Unitary transformation. --- Variable (mathematics).

Listing 1 - 5 of 5
Sort by