Narrow your search
Listing 1 - 10 of 22 << page
of 3
>>
Sort by

Book
Analyse de la réplication de virus de Theiler mutés au niveau de la capside et de la protéine L
Authors: --- ---
Year: 1994 Publisher: Bruxelles: UCL,

Loading...
Export citation

Choose an application

Bookmark

Abstract

La souche DA du virus de Theiler entraîne chez la souris une maladie biphasique du système nerveux central. Quelques jours après l’inoculation intracraniale du virus, apparaît une encéphalomyélite aiguë (maladie précoce) à laquelle la majorité des animaux survivent. Pendant cette période, le virus infecte un faible nombre de neurones, principalement du cerveau. Après quelques jours, le virus est éliminé de neurones et les animaux développent une seconde phase (maladie tardive), qui dure toute la vie de l’animal. Elle est caractérisée par l’apparition dans la substance blanche de la moelle épinière de foyers inflammatoires dans lesquels on observe des axones démyélinisés. Au cours de cette phase, le virus persiste dans les cellules de la substance blanche du SNC, notamment dans les oligodendrocytes.
Les objectifs du laboratoire sont d’une part de comprendre les bases moléculaires du tropisme tissulaire et cellulaire du virus et, d’autre part, d’analyser le rôle de ce tropisme dans la persistance et la démyélinisation. Différentes approches ont été envisagées pour pouvoir, à long terme, comprendre d’une part quelles cellules abritent le virus de la réponse immunitaire et permettent la persistance de l’infection et pour comprendre d’autre part quels mécanismes engendrent la démyélinisation.
La stratégie proposée est de construire des virus défectifs qui pourraient être complémentés en trans par la facteur manquant exprimé dans une souris transgénique sous la contrôle d’un promoteur spécifique de cellule. On pourrait ainsi déterminer les conséquences d’une modification du tropisme cellulaire du virus sur la pathologie et la persistance virale.
Un préalable à cette étude est d’identifier les gènes viraux les plus susceptibles d’être complémentés en trans. Nous avons initié cette étude en construisant des virus mutés dans 4 des 12 protéines virales et en clonant les gènes correspondant dans un vecteur d’expression en vue d’effectuer des essais de complémentation.
Il apparaît qu’un virus muté dans la protéine L n’est pas affecté dans sa capacité de se propager dans une culture de cellules BHK21. Par contre, ce mutant se propage moins bien que la souche parentale DA dans la lignée cellulaire L929.Son phénotype dans les souris est testé en ce moment.
Un virus muté dans la protéine VP1 conserve la capacité de répliquer son génome dans des cellules BHK21. Cependant, ce virus ne peut se propager de cellule à cellule vu son incapacité de générer une capside fonctionnelle. Les virus mutés des protéines VP2 et VP3 ont également été construits. Leur phénotype n’a pas encore été testé.
Nous avons construit un vecteur d’expression codant pour un précurseur comportant la protéine L et les différents protéines de capside. En vue d’effectuer les tests complémentaires en trans, nous avons tenté d’obtenir une lignée cellulaire exprimant de façon stable le précurseur protéolytique codé par ce vecteur.


Book
Structure-function relationships in the nucleocapsid of the double-stranded RNA bacteriophage ø6.
Authors: ---
ISBN: 9529023685 Year: 1990 Publisher: Helsinki s.n.

Loading...
Export citation

Choose an application

Bookmark

Abstract


Dissertation
Apoptin : a viral protein that induces tumor-specific apoptosis
Authors: ---
Year: 2001 Publisher: Wageningen Ponsen en Looijen

Loading...
Export citation

Choose an application

Bookmark

Abstract


Dissertation
Early steps in bacteriophage ø6 infection : function of pili, membrane fusion, and nucleocapsid penetration
Authors: ---
ISBN: 9519987266 Year: 1987 Publisher: Helsinki Hakapaino oy

Loading...
Export citation

Choose an application

Bookmark

Abstract


Dissertation
T cell immunity against early antigens of human papillomavirus type 16
Authors: ---
ISBN: 9090189815 Year: 2005


Book
Virus-Based Nanomaterials and Nanostructures
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

A virus is considered a nanoscale organic material that can infect and replicate only inside the living cells of other organisms, ranging from animals and plants to microorganisms, including bacteria and archaea. The structure of viruses consists of two main parts: the genetic material from either DNA or RNA that carries genetic information, and a protein coat, called the capsid, which surrounds and protects the genetic material. By inserting the gene encoding functional proteins into the viral genome, the functional proteins can be genetically displayed on the protein coat to form bioengineered viruses. Therefore, viruses can be considered biological nanoparticles with genetically tunable surface chemistry and can serve as models for developing virus-like nanoparticles and even nanostructures. Via this process of viral display, bioengineered viruses can be mass-produced with lower cost and potentially used for energy and biomedical applications. This book highlights the recent developments and future directions of virus-based nanomaterials and nanostructures. The virus-based biomimetic materials formulated using innovative ideas were characterized for the applications of biosensors and nanocarriers. The research contributions and trends on virus-based materials covering energy harvesting devices to tissue regeneration in the last two decades are discussed.


Book
Virus-Like Particle Vaccines
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The structure, uniformity, stability, and functions of virus-like particles (VLPs) have encouraged scientists to utilize them as a unique tool in various applications in biomedical fields. Their interaction with the innate immune system is of major importance for the adaptive immune response they induce. The innate immune cells and molecules recognize and interact with VLPs on the basis of two major characteristics: size and surface geometry. VLP-based vaccines against hepatitis B, human papilloma, malaria, and hepatitis E have been developed and are available in many countries around the world. Given the inherent immunogenicity of VLPs, they render themselves ideal for the development of new vaccines against infectious diseases as well as noncommunicable diseases, such as chronic inflammation or cancer. This Special Issue is designed to provide an up-to-date view of the latest progress in the development of VLP-based prophylactic and therapeutic vaccines and technologies for their generation.

Keywords

Humanities --- Social interaction --- virus-like particle --- influenza A(H1N1)pdm09 --- vaccination --- pregnant women --- antibody titers --- norovirus --- VLP --- vaccine --- genotype --- pre-existing immunity --- cross-reactivity --- blocking antibodies --- original antigenic sin (OAS) --- HPVs --- vaccines --- virus-like particles (VLPs) --- minor capsid protein (L2) --- HCMV --- cytomegalovirus --- nanoparticle --- immune response --- Sudan virus --- mice --- horse --- purified IgG --- long-lived plasma cells --- antibodies --- multivalency --- virus-like particles --- antigenic analysis --- epitope characterization --- hepatitis E vaccine --- serological evaluation --- virion-like epitopes --- well-characterized vaccines --- hepatitis B virus --- surface (envelope) antigen --- sub-viral particle --- capsid --- antigen display --- platform --- viral quantification --- NTA --- flow virometry --- SRFM --- cryo-TEM --- SEM --- plant virus --- virus-like --- vaccine platform --- epitope --- antigen --- cat allergy --- Fel d 1 --- HypoCat™ --- IL-13 --- interleukin-13 --- Tfh cells --- cancer --- immunotherapy --- H7N9 --- pandemic influenza A --- avian flu --- IAV --- VLP vaccine --- virus-like particle --- influenza A(H1N1)pdm09 --- vaccination --- pregnant women --- antibody titers --- norovirus --- VLP --- vaccine --- genotype --- pre-existing immunity --- cross-reactivity --- blocking antibodies --- original antigenic sin (OAS) --- HPVs --- vaccines --- virus-like particles (VLPs) --- minor capsid protein (L2) --- HCMV --- cytomegalovirus --- nanoparticle --- immune response --- Sudan virus --- mice --- horse --- purified IgG --- long-lived plasma cells --- antibodies --- multivalency --- virus-like particles --- antigenic analysis --- epitope characterization --- hepatitis E vaccine --- serological evaluation --- virion-like epitopes --- well-characterized vaccines --- hepatitis B virus --- surface (envelope) antigen --- sub-viral particle --- capsid --- antigen display --- platform --- viral quantification --- NTA --- flow virometry --- SRFM --- cryo-TEM --- SEM --- plant virus --- virus-like --- vaccine platform --- epitope --- antigen --- cat allergy --- Fel d 1 --- HypoCat™ --- IL-13 --- interleukin-13 --- Tfh cells --- cancer --- immunotherapy --- H7N9 --- pandemic influenza A --- avian flu --- IAV --- VLP vaccine


Book
Virus-Based Nanomaterials and Nanostructures
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

A virus is considered a nanoscale organic material that can infect and replicate only inside the living cells of other organisms, ranging from animals and plants to microorganisms, including bacteria and archaea. The structure of viruses consists of two main parts: the genetic material from either DNA or RNA that carries genetic information, and a protein coat, called the capsid, which surrounds and protects the genetic material. By inserting the gene encoding functional proteins into the viral genome, the functional proteins can be genetically displayed on the protein coat to form bioengineered viruses. Therefore, viruses can be considered biological nanoparticles with genetically tunable surface chemistry and can serve as models for developing virus-like nanoparticles and even nanostructures. Via this process of viral display, bioengineered viruses can be mass-produced with lower cost and potentially used for energy and biomedical applications. This book highlights the recent developments and future directions of virus-based nanomaterials and nanostructures. The virus-based biomimetic materials formulated using innovative ideas were characterized for the applications of biosensors and nanocarriers. The research contributions and trends on virus-based materials covering energy harvesting devices to tissue regeneration in the last two decades are discussed.

Keywords

History of engineering & technology --- virus-like particles --- glioblastoma --- convection-enhanced delivery --- tobacco mosaic virus --- bioconjugation --- doxorubicin --- drug delivery --- protein-based nanomaterials --- viral capsid --- VLPs --- hepatitis B virus capsid protein --- HBc --- viral self-assembly --- magnetic core --- HBcAg --- BmNPV bacmid --- nanobiomaterials --- Neospora caninum --- Neospora caninum profilin --- neosporosis --- silkworm expression system --- ZnS --- bio/inorganic hybrid materials --- hydrophobization --- polymer coupling --- virus --- tissue regeneration --- biomimetic nanocomposites --- phage display --- nano-vaccines --- HIV-1 Env trimers --- B-cell targeting --- intrastructural help --- VNPs --- Hsp60 --- IBD --- autoantibody --- inflammation --- diagnosis --- biosensor --- M13 bacteriophage --- color sensor --- energy generator --- piezoelectric --- self-assembly --- genetic engineering --- multi-array sensors --- hierarchical cluster analysis --- high selectivity --- piezoelectric materials --- organic materials --- biomaterials --- energy applications --- biomedical applications --- virus-based nanomaterials --- energy devices --- piezoelectric biomaterials --- virus-like particles --- glioblastoma --- convection-enhanced delivery --- tobacco mosaic virus --- bioconjugation --- doxorubicin --- drug delivery --- protein-based nanomaterials --- viral capsid --- VLPs --- hepatitis B virus capsid protein --- HBc --- viral self-assembly --- magnetic core --- HBcAg --- BmNPV bacmid --- nanobiomaterials --- Neospora caninum --- Neospora caninum profilin --- neosporosis --- silkworm expression system --- ZnS --- bio/inorganic hybrid materials --- hydrophobization --- polymer coupling --- virus --- tissue regeneration --- biomimetic nanocomposites --- phage display --- nano-vaccines --- HIV-1 Env trimers --- B-cell targeting --- intrastructural help --- VNPs --- Hsp60 --- IBD --- autoantibody --- inflammation --- diagnosis --- biosensor --- M13 bacteriophage --- color sensor --- energy generator --- piezoelectric --- self-assembly --- genetic engineering --- multi-array sensors --- hierarchical cluster analysis --- high selectivity --- piezoelectric materials --- organic materials --- biomaterials --- energy applications --- biomedical applications --- virus-based nanomaterials --- energy devices --- piezoelectric biomaterials


Book
Virus-Like Particle Vaccines
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The structure, uniformity, stability, and functions of virus-like particles (VLPs) have encouraged scientists to utilize them as a unique tool in various applications in biomedical fields. Their interaction with the innate immune system is of major importance for the adaptive immune response they induce. The innate immune cells and molecules recognize and interact with VLPs on the basis of two major characteristics: size and surface geometry. VLP-based vaccines against hepatitis B, human papilloma, malaria, and hepatitis E have been developed and are available in many countries around the world. Given the inherent immunogenicity of VLPs, they render themselves ideal for the development of new vaccines against infectious diseases as well as noncommunicable diseases, such as chronic inflammation or cancer. This Special Issue is designed to provide an up-to-date view of the latest progress in the development of VLP-based prophylactic and therapeutic vaccines and technologies for their generation.


Book
Virus-Based Nanomaterials and Nanostructures
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

A virus is considered a nanoscale organic material that can infect and replicate only inside the living cells of other organisms, ranging from animals and plants to microorganisms, including bacteria and archaea. The structure of viruses consists of two main parts: the genetic material from either DNA or RNA that carries genetic information, and a protein coat, called the capsid, which surrounds and protects the genetic material. By inserting the gene encoding functional proteins into the viral genome, the functional proteins can be genetically displayed on the protein coat to form bioengineered viruses. Therefore, viruses can be considered biological nanoparticles with genetically tunable surface chemistry and can serve as models for developing virus-like nanoparticles and even nanostructures. Via this process of viral display, bioengineered viruses can be mass-produced with lower cost and potentially used for energy and biomedical applications. This book highlights the recent developments and future directions of virus-based nanomaterials and nanostructures. The virus-based biomimetic materials formulated using innovative ideas were characterized for the applications of biosensors and nanocarriers. The research contributions and trends on virus-based materials covering energy harvesting devices to tissue regeneration in the last two decades are discussed.

Listing 1 - 10 of 22 << page
of 3
>>
Sort by