Listing 1 - 3 of 3 |
Sort by
|
Choose an application
Cossos algebraics --- Camp (Matemàtica) --- Camps (Matemàtica) --- Camps algebraics --- Camps algèbrics --- Cos (Matemàtica) --- Cossos (Matemàtica) --- Cossos algèbrics --- Nombres algebraics --- Nombres algèbrics --- Teoria de camps --- Teoria de camps (Àlgebra) --- Teoria de camps (Matemàtica) --- Teoria de cossos --- Teoria de cossos (Àlgebra) --- Teoria de cossos (Matemàtica) --- Teoria algebraica de nombres --- Àlgebra diferencial --- Anells de divisió --- Camps finits (Àlgebra) --- Cossos topològics --- Extensions de cossos (Matemàtica) --- Ideals (Àlgebra) --- Teoria de nombres --- Quadratic fields. --- Fields, Quadratic --- Algebraic fields --- Espacios algebraicos
Choose an application
This volume introduces some recent developments in Arithmetic Geometry over local fields. Its seven chapters are centered around two common themes: the study of Drinfeld modules and non-Archimedean analytic geometry. The notes grew out of lectures held during the research program "Arithmetic and geometry of local and global fields" which took place at the Vietnam Institute of Advanced Study in Mathematics (VIASM) from June to August 2018. The authors, leading experts in the field, have put great effort into making the text as self-contained as possible, introducing the basic tools of the subject. The numerous concrete examples and suggested research problems will enable graduate students and young researchers to quickly reach the frontiers of this fascinating branch of mathematics.
Number theory. --- Algebraic geometry. --- Algebra. --- Field theory (Physics). --- Number Theory. --- Algebraic Geometry. --- Field Theory and Polynomials. --- Classical field theory --- Continuum physics --- Physics --- Continuum mechanics --- Mathematics --- Mathematical analysis --- Algebraic geometry --- Geometry --- Number study --- Numbers, Theory of --- Algebra --- Local fields (Algebra) --- Fields, Local (Algebra) --- Algebraic fields --- Cossos algebraics --- Geometria algebraica aritmètica --- Geometria algèbrica aritmètica --- Geometria diofàntica --- Geometria algebraica --- Teoria de nombres --- Punts racionals (Geometria) --- Varietats de Shimura --- Camp (Matemàtica) --- Camps (Matemàtica) --- Camps algebraics --- Camps algèbrics --- Cos (Matemàtica) --- Cossos (Matemàtica) --- Cossos algèbrics --- Nombres algebraics --- Nombres algèbrics --- Teoria de camps --- Teoria de camps (Àlgebra) --- Teoria de camps (Matemàtica) --- Teoria de cossos --- Teoria de cossos (Àlgebra) --- Teoria de cossos (Matemàtica) --- Teoria algebraica de nombres --- Àlgebra diferencial --- Anells de divisió --- Camps finits (Àlgebra) --- Cossos topològics --- Extensions de cossos (Matemàtica) --- Ideals (Àlgebra) --- Algebraic fields. --- Polynomials. --- Algebraic number fields --- Algebraic numbers --- Fields, Algebraic --- Algebra, Abstract --- Algebraic number theory --- Rings (Algebra)
Choose an application
Ever since the analogy between number fields and function fields was discovered, it has been a source of inspiration for new ideas, and a long history has not in any way detracted from the appeal of the subject. As a deeper understanding of this analogy could have tremendous consequences, the search for a unified approach has become a sort of Holy Grail. The arrival of Arakelov's new geometry that tries to put the archimedean places on a par with the finite ones gave a new impetus and led to spectacular success in Faltings' hands. There are numerous further examples where ideas or techniques from the more geometrically-oriented world of function fields have led to new insights in the more arithmetically-oriented world of number fields, or vice versa. These invited articles by leading researchers in the field explore various aspects of the parallel worlds of function fields and number fields. Topics range from Arakelov geometry, the search for a theory of varieties over the field with one element, via Eisenstein series to Drinfeld modules, and t-motives. This volume is aimed at a wide audience of graduate students, mathematicians, and researchers interested in geometry and arithmetic and their connections. Contributors: G. Böckle; T. van den Bogaart; H. Brenner; F. Breuer; K. Conrad; A. Deitmar; C. Deninger; B. Edixhoven; G. Faltings; U. Hartl; R. de Jong; K. Köhler; U. Kühn; J.C. Lagarias; V. Maillot; R. Pink; D. Roessler; and A. Werner.
Geometry, Algebraic. --- Mathematical physics. --- Number theory. --- Number study --- Numbers, Theory of --- Physical mathematics --- Physics --- Algebraic geometry --- Mathematics --- Mathematics. --- Algebraic geometry. --- Physics. --- Algebraic Geometry. --- Number Theory. --- Mathematical Methods in Physics. --- Algebra --- Geometry --- Geometry, algebraic. --- Natural philosophy --- Philosophy, Natural --- Physical sciences --- Dynamics --- Teoria de nombres --- Cossos algebraics --- Camp (Matemàtica) --- Camps (Matemàtica) --- Camps algebraics --- Camps algèbrics --- Cos (Matemàtica) --- Cossos (Matemàtica) --- Cossos algèbrics --- Nombres algebraics --- Nombres algèbrics --- Teoria de camps --- Teoria de camps (Àlgebra) --- Teoria de camps (Matemàtica) --- Teoria de cossos --- Teoria de cossos (Àlgebra) --- Teoria de cossos (Matemàtica) --- Teoria algebraica de nombres --- Àlgebra diferencial --- Anells de divisió --- Camps finits (Àlgebra) --- Cossos topològics --- Extensions de cossos (Matemàtica) --- Ideals (Àlgebra) --- Teoria dels nombres --- Àlgebra --- Anàlisi diofàntica --- Arrels de la unitat --- Congruències i residus --- Conjectura de Catalan --- Darrer teorema de Fermat --- Formes automorfes --- Formes quadràtiques --- Fórmula de traça de Selberg --- Funcions aritmètiques --- Funcions L --- Funcions modulars --- Funcions recursives --- Funcions zeta --- Geometria algebraica aritmètica --- Geometria de nombres --- Grups modulars --- Lleis de reciprocitat --- Nombres de Fermat --- Nombres ordinals --- Nombres p-àdics --- Nombres transfinits --- Numeració --- Particions (Matemàtica) --- Quadrats màgics --- Sedàs (Matemàtica) --- Teorema de Fermat --- Teorema de Gödel --- Teoria de Galois
Listing 1 - 3 of 3 |
Sort by
|