Listing 1 - 10 of 19 | << page >> |
Sort by
|
Choose an application
Calcium Phosphates --- Titanium --- chemistry --- chemistry
Choose an application
Calcium Phosphates --- Serum Albumin, Bovine --- Titanium --- chemistry --- chemistry --- chemistry
Choose an application
Bone and Bones --- Ceramics --- Hydroxyapatites --- Prostheses and Implants --- Calcium Phosphates --- Bone Diseases --- surgery --- surgery
Choose an application
Bone and Bones --- Ceramics --- Prostheses and Implants --- Calcium Phosphates --- Bone and Bones --- Hydroxyapatites --- surgery
Choose an application
Biocompatible Materials --- Bone and Bones --- Calcium Phosphates --- Coated Materials, Biocompatible --- Osseointegration --- Prostheses and Implants --- chemistry --- pathology --- chemistry --- chemistry
Choose an application
Mandible --- Calcium Phosphates --- Bone Transplantation --- Bone Substitutes --- Biocompatible Materials --- Tissue Scaffolds --- surgery --- therapeutic use --- methods --- therapeutic use --- metabolism --- chemistry
Choose an application
Coatings based on hydroxyapatite and calcium phosphates have a significant relevance in several research fields, such as biomaterials, cultural heritage, and water treatment, due to their characteristic properties. Hydroxyapatite can easily accommodate foreign ions, which can either be incorporated into the lattice, thanks to its specific lattice characteristics, or be adsorbed onto its surface. All these substitutions significantly alter the morphology, lattice parameters, and crystallinity of hydroxyapatite so they influence its main properties. These ion substitutions can be sought or can derive from substrate contaminations, which is an important aspect to be evaluated. Finally, this capability can be used to obtain hydroxyapatites with specific properties, such as antibacterial characteristics, among others. For these reasons, the aim of this Special Issue is to document current advances in the field of ion-substituted hydroxyapatites and highlight possible future perspectives regarding their use. Contributions in the form of original articles and review articles are presented, covering different areas of application.
History of engineering & technology --- calcium phosphates --- ion-substituted apatites --- bone regeneration --- plasma-assisted deposition --- solubility --- crystallinity --- composition --- lithium-doped hydroxyapatite coatings --- renewable resources for implant coatings --- pulsed laser deposition --- biocompatibility --- inhibition of microbial biofilms development --- zinc --- hydroxyapatite --- ultrasound measurement --- sol–gel spin coating --- layers --- C. albicans --- S. aureus --- calcium phosphate --- magnesium phosphate --- struvite --- dolomite --- consolidating treatment --- cultural heritage --- ammonium phosphate --- marble --- calcite --- dissolution --- electrodeposition --- protective coatings --- acid attack --- potential --- current --- RF magnetron sputtering --- GLAD --- carbonated hydroxyapatite --- nanomaterials --- coatings --- cave painting --- inorganic consolidant --- ethyl silicate --- TEOS --- non-thermal plasma --- wettability --- bone --- allograft --- autograft --- xenograft --- ion-substituted calcium phosphates --- nanostructured coatings
Choose an application
Coatings based on hydroxyapatite and calcium phosphates have a significant relevance in several research fields, such as biomaterials, cultural heritage, and water treatment, due to their characteristic properties. Hydroxyapatite can easily accommodate foreign ions, which can either be incorporated into the lattice, thanks to its specific lattice characteristics, or be adsorbed onto its surface. All these substitutions significantly alter the morphology, lattice parameters, and crystallinity of hydroxyapatite so they influence its main properties. These ion substitutions can be sought or can derive from substrate contaminations, which is an important aspect to be evaluated. Finally, this capability can be used to obtain hydroxyapatites with specific properties, such as antibacterial characteristics, among others. For these reasons, the aim of this Special Issue is to document current advances in the field of ion-substituted hydroxyapatites and highlight possible future perspectives regarding their use. Contributions in the form of original articles and review articles are presented, covering different areas of application.
calcium phosphates --- ion-substituted apatites --- bone regeneration --- plasma-assisted deposition --- solubility --- crystallinity --- composition --- lithium-doped hydroxyapatite coatings --- renewable resources for implant coatings --- pulsed laser deposition --- biocompatibility --- inhibition of microbial biofilms development --- zinc --- hydroxyapatite --- ultrasound measurement --- sol–gel spin coating --- layers --- C. albicans --- S. aureus --- calcium phosphate --- magnesium phosphate --- struvite --- dolomite --- consolidating treatment --- cultural heritage --- ammonium phosphate --- marble --- calcite --- dissolution --- electrodeposition --- protective coatings --- acid attack --- potential --- current --- RF magnetron sputtering --- GLAD --- carbonated hydroxyapatite --- nanomaterials --- coatings --- cave painting --- inorganic consolidant --- ethyl silicate --- TEOS --- non-thermal plasma --- wettability --- bone --- allograft --- autograft --- xenograft --- ion-substituted calcium phosphates --- nanostructured coatings
Choose an application
Coatings based on hydroxyapatite and calcium phosphates have a significant relevance in several research fields, such as biomaterials, cultural heritage, and water treatment, due to their characteristic properties. Hydroxyapatite can easily accommodate foreign ions, which can either be incorporated into the lattice, thanks to its specific lattice characteristics, or be adsorbed onto its surface. All these substitutions significantly alter the morphology, lattice parameters, and crystallinity of hydroxyapatite so they influence its main properties. These ion substitutions can be sought or can derive from substrate contaminations, which is an important aspect to be evaluated. Finally, this capability can be used to obtain hydroxyapatites with specific properties, such as antibacterial characteristics, among others. For these reasons, the aim of this Special Issue is to document current advances in the field of ion-substituted hydroxyapatites and highlight possible future perspectives regarding their use. Contributions in the form of original articles and review articles are presented, covering different areas of application.
History of engineering & technology --- calcium phosphates --- ion-substituted apatites --- bone regeneration --- plasma-assisted deposition --- solubility --- crystallinity --- composition --- lithium-doped hydroxyapatite coatings --- renewable resources for implant coatings --- pulsed laser deposition --- biocompatibility --- inhibition of microbial biofilms development --- zinc --- hydroxyapatite --- ultrasound measurement --- sol–gel spin coating --- layers --- C. albicans --- S. aureus --- calcium phosphate --- magnesium phosphate --- struvite --- dolomite --- consolidating treatment --- cultural heritage --- ammonium phosphate --- marble --- calcite --- dissolution --- electrodeposition --- protective coatings --- acid attack --- potential --- current --- RF magnetron sputtering --- GLAD --- carbonated hydroxyapatite --- nanomaterials --- coatings --- cave painting --- inorganic consolidant --- ethyl silicate --- TEOS --- non-thermal plasma --- wettability --- bone --- allograft --- autograft --- xenograft --- ion-substituted calcium phosphates --- nanostructured coatings --- calcium phosphates --- ion-substituted apatites --- bone regeneration --- plasma-assisted deposition --- solubility --- crystallinity --- composition --- lithium-doped hydroxyapatite coatings --- renewable resources for implant coatings --- pulsed laser deposition --- biocompatibility --- inhibition of microbial biofilms development --- zinc --- hydroxyapatite --- ultrasound measurement --- sol–gel spin coating --- layers --- C. albicans --- S. aureus --- calcium phosphate --- magnesium phosphate --- struvite --- dolomite --- consolidating treatment --- cultural heritage --- ammonium phosphate --- marble --- calcite --- dissolution --- electrodeposition --- protective coatings --- acid attack --- potential --- current --- RF magnetron sputtering --- GLAD --- carbonated hydroxyapatite --- nanomaterials --- coatings --- cave painting --- inorganic consolidant --- ethyl silicate --- TEOS --- non-thermal plasma --- wettability --- bone --- allograft --- autograft --- xenograft --- ion-substituted calcium phosphates --- nanostructured coatings
Choose an application
Ion-sensitive membrane-based sensors and ionic processes in bio-membranes are the focus of this book. The chapters are carefully chosen to characterize essential research trends, applications, and perspectives. They include solid contact ion-selective and reference electrodes and their electroanalytical behavior in zero and nonzero-current modes, planar and miniaturized multielectrode platforms, ion monitoring in extreme sports, and transmembrane transport through living endothelial cells to find the volume. This book is crowned by the consideration of a yet unexplored ion status in a mitochondrial matrix
Research & information: general --- Biology, life sciences --- potentiometry --- reference electrode --- solid contact --- heterogenous membranes --- polymer membranes --- ion transport --- water transport --- epithelium --- cystic fibrosis --- mitochondrion --- calcium carbonates --- calcium phosphates --- calcium polyphosphates --- ATP production --- hypoxia --- ischemia --- pre-conditioning --- ion selective electrodes --- wearable sensors --- solid-contact materials --- response mechanism --- anhydrous and hydrous ruthenium dioxide --- porous microstructure --- high capacity --- stable measuring signal --- chemically modified electrodes --- membrane-coated voltammetric sensors --- antidepressant and immunosuppressant drugs --- detection limit --- resolution --- ion-selective membranes --- components leakage --- incorporation --- all-solid-state sensors --- potentiometry --- reference electrode --- solid contact --- heterogenous membranes --- polymer membranes --- ion transport --- water transport --- epithelium --- cystic fibrosis --- mitochondrion --- calcium carbonates --- calcium phosphates --- calcium polyphosphates --- ATP production --- hypoxia --- ischemia --- pre-conditioning --- ion selective electrodes --- wearable sensors --- solid-contact materials --- response mechanism --- anhydrous and hydrous ruthenium dioxide --- porous microstructure --- high capacity --- stable measuring signal --- chemically modified electrodes --- membrane-coated voltammetric sensors --- antidepressant and immunosuppressant drugs --- detection limit --- resolution --- ion-selective membranes --- components leakage --- incorporation --- all-solid-state sensors
Listing 1 - 10 of 19 | << page >> |
Sort by
|