Listing 1 - 9 of 9 |
Sort by
|
Choose an application
The insulin-secreting pancreatic B-cell is electrically excitable. Glucose induces insulin secretion by depolarising the plasma membrane. This opens the voltage-dependant calcium channels and increase the cytosolic Ca2+ concentration ([Ca2+]c) which triggers exocytosis. The role of the endoplasmic reticulum (ER) in the glucose-induced [Ca2+]c rise is disputed. Moreover, the role of Ca2+-binding proteins, like calbindin, is largely unknown in B-cells. The aim of this work was therefore double:
Role of the endoplasmic reticulum:
In various cell types, Ca2+ can be released from the ER by three different mechanisms : IP3-Induced Ca2+ Release (IP3ICR) par IP3 receptors, Depolarization-Induced Ca2+ Release » (DIRC) by type 1 ryanodine receptors, and Ca2+-Induced Ca2+ Release (CICR) by the type 2, and, probably also, type 3 ryanodine receptors. We tested whether, in mouse B-cells, one or several of these mechanisms amplify the [Ca2+]c rise induced by Ca2+ influx through voltage-dependant Ca2+ channels.
When the plasma membrane in single B-cells is depolarised by high K+, [Ca2+]c increases to a large extent and, in some cells, the rise in [Ca2+]c is biphasic and characterized by a second phase occurring soon after [Ca2+]c levels up. No second phase is observed in cells pretreated with thapsigargin, a potent inhibitor of the ER in the [Ca2+]c rise elicited by a depolarization. To test the existence of a DIRC is well established. To look for the existence of a CICR in B-cells, we used physiological (depolarization by high K+) and pharmacological (caffeine that activates ryanodine receptors) approaches. In a Ca2+-free medium, depolarization and caffeine have no effect on B-cell [Ca2+]c, but increase [Ca2+]c in skeletal muscle fibers, a preparation where DICR is well established. To look for the existence of a CICR in B-cells, physiological (short depolarizations in the presence of extracellular Ca2+ using the patch-clamp technique) and pharmacological (caffeine) approaches were again used. The existence of CICR can be disclosed in patch-clamp experiments by a supralinear relationship between changes in [Ca2+]c and voltage-dependant Ca2+ currents. However, in B-cells, this relationship was infralinear, even in the presence of the CICR sensitizer, caffeine, that increases [Ca2+]c in cardiomyocytes, a preparation where CICR is well established. The second phase in the high K+-induced [Ca2+]c rise observed in some cells was resistant to high concentrations of ryanodine that inhibit ryanodine receptors and block DICR and CICR in skeletal fibers and cardiomyocytes. We also studied by RT-PCR the expression of the three ryanodine receptor isoforms. In B-cells, we detected only low mRNA levels if type 3 ryanodine receptors only, whereas in skeletal fibers and cardiomyocytes we detected large mRNA levels of the type 1 and 2 ryanodine receptor, the physiological role if which is largely unknown, DICR and CICR mechanisms are not involved in the [Ca2+]c rise elicited by a depolarization in B-cells.
IP3 receptors do not amplify the [Ca2+]c rise induced by Ca2+ influx through voltage-operated Ca2+ channels. Indeed, inhibition of IP3 receptors by microinjection of heparin in B-cells does not affect the [Ca2+]c rise induced by high K+.
Role of calbindin
Some recent studies pretend that, in B-cells, calbindin, a cytosolic Ca2+-binding protein, plays a role in high K+-induced [Ca2+]c rise and insulin secretion. In the present study, no difference in glucose- or high K+-induced [Ca2+]c changes was observed between calbindin knock-out (KO) and control mice. Glucose homeostasis of KO mice was normal, but fasting glycemia was lower in KO than in control animals. Immunodetections showed that calbindin is located only at the periphery of the islets, in glucagon and somatostatin-secreting cells. These results suggest that, contrary to what has recently been suggested, calbindin does not play any role in B-cells. However, it could modulate the function of glucagon and somatostatin-secreting cells La cellule B pancréatique sécrétant l’insuline est électriquement excitable. Le glucose stimule la sécrétion d’insuline en dépolarisant la membrane plasmique, ce qui ouvre les canaux calciques voltage-dépendants et augmente la concentration cytoplasmique de Ca2+ ([Ca2+]c) qui déclenche l’exocytose. Le rôle du réticulum endoplasmique (RE) dans l’élévation de la [Ca2+]c induite par le glucose est fortement controversé. De plus, le rôle des protéines liant le Ca2+, telle que la calbindine, est tout à fait méconnu dans le cellule B. le but de ce mémoire a donc été double :
Rôle du réticulum endoplasmique :
Dans de nombreux types cellulaires, le Ca2+ peut être relargué du réticulum par trois mécanismes différents : 1’ « IP3-Induced Ca2+ Release » (IP3ICR) par les récepteurs à l’IP3, le « Depolarization-Induced Ca2+ Release » (DIRC) par les récepteurs à la ryanodine de type 1 et le « Ca2+-Induced Ca2+ Release » (CICR) par les récepteurs à la ryanodine de type 2 et vraisemblablement 3. Nous avons testé si, dans les cellules B de souris, un ou plusieurs de ces mécanismes amplifient l’élévation de la [Ca2+]c induite par un influx de Ca2+ à travers les canaux calciques voltage-dépendants.
Lorsque la membrane de cellules B isolées est dépolarisée par une concentration élevée de K+ extracellulaire, la [Ca2+]c augmente fortement et, dans certaines cellules, l’élévation de la [Ca2+]c est caractérisée par une seconde phase qui se surajoute à la première. Aucune seconde phase n’est observée dans des cellules prétraitées à la thapsigargine, un puissant inhibiteur de la Ca2+-ATPase du RE qui vide le RE de son contenu en Ca2+. Cette observation suggère un rôle possible du RE dans l’élévation de la [Ca2+]c en réponse à une dépolarisation. Pour tester l’existence d’un DICR dans la cellule B, nous avons utilisé des approches physiologique (le dépolarisation par du K+ élevé) et pharmacologique (la caféine, qui active les récepteurs à la ryanodine). En l’absence de Ca2+ extracellulaire, la dépolarisation et la caféine sont sans effet sur la [Ca2+]c dans le cellule B, mais augmentent la [Ca2+]c dans les cellules musculaires squelettiques où le DICR est bien établi. Afin de déceler un CICR, des approches physiologiques (de courtes dépolarisations en présence de Ca2+ extracellulaire en utilisant la technique du patch-clamp) et pharmacologique (la caféine) ont à nouveau été utilisées. L’existence d’un CICR devrait se manifester par une relation supralinéaire entre les changements de la [Ca2+]c et le courants calciques voltage-dépendants. Or, dans la cellule B, la relation est plutôt infralinéaire, même en présence de caféine. La caféine augmente pourtant la [Ca2+]c dans les cellules cardiaques où le CICR joue un rôle important. La deuxième phase de l’élévation de la [Ca2+]c observée dans certaines cellules lors de la dépolarisation par du K+élevé n’est pas abolie par un prétraitement avec une forte concentration de ryanodine qui inhibe les récepteurs à la ryanodine et vloque le DICR et le CICR des cellules musculaires squelettiques et cardiaques. Pour compléter ces données fonctionnelles, nous avons étudié, par RT-PCR, l’expression des trois isoformes du récepteur à la ryanodine. Nous n’avons détecté que de faibles quantités d’ARNm pour le récepteur à la ryanodine de type 3 dans les cellules B, alors que nous détections des taux élevés d’ARNm pour les récepteurs à la ryanodine de type 1 et 2 pour les cellules musculaires squelettiques et cardiaques, respectivement. L’ensemble de ces résultats suggère que, malgré la présence de récepteurs à la ryanodine de type 3 dont le rôle physiologique est méconnu, les phénomènes de DICR et de CICR n’interviennent pas dans l’élévation de la [Ca2+]c induite par une dépolarisation dans la cellule B.
de même, les récepteurs, à l’IP3 n’amplifient pas l’élévation de la [Ca2+]c induite par un influx de Ca2+ à travers les canaux calciques voltage-dépendants. En effet, l’inhibition des récepteurs à l’IP3 par microinjection d’héparine dans les cellules B n’altère pas l’élévation de la [Ca2+]c induite par du K+ élevé.
Rôle de la calbindine
Selon certaines études, la calbindine, une protéine cytosolique liant la Ca2+, jouerait un rôle dans l’élévation de la [Ca2+]c dans la cellule B et dans la sécrétion d’insuline. Dans ce travail, aucune différence importante n’a été observée dans la [Ca2+]c en réponse à une dépolarisation ou au glucose entre des souris knock-out (KO) pour la calbindine et des souris contrôles. L’homéostasie glucidique des souris KO ne semble pas non plus affectée, mais la glycémie à jeun est inférieure chez les souris KO que chez les contrôles. Des immunodétections ont montré que la calbindine est localisée uniquement en périphérie de l’îlot, dans les cellules à glucagon et à somatostatine. Ces résultats suggèrent que, contrairement à ce qui a été rapporté dans la littérature, la calbindine ne jouerait aucun rôle dans la cellule B. Toutefois, elle pourrait peut-être moduler la fonction des cellules à glucagon et à somatostatine
Endoplasmic Reticulum --- Cytosol --- Pancreas
Choose an application
Les ROS ont depuis toujours été considérés nocifs pour les cellules P pancréatiques car ils altèrent la structure et la fonction des composants moléculaires de la cellule. Cependant, une théorie récente accorde un rôle bénéfique à l'H202. En effet, en agissant en tant que messager secondaire, il aurait la capacité d'activer la stimulation de la sécrétion d'insuline par le glucose. Cette théorie est toutefois controversée. Il a ainsi été démontré que si l'on surexprime dans les cellules p la catalase qui décompose l'H202 en H20 et 02, on ne modifie pas la stimulation de la sécrétion d'insuline par le glucose.L'objectif de mon mémoire est d'étudier de manière approfondie les éventuels changements de la concentration d'H202 dans la cellule p, et plus particulièrement dans le cytosol et la matrice mitochondriale de ces cellules, suite à la stimulation par différents nutriments . Pour cela, nous avons décidé d'utiliser la sonde protéique ratiométrique roGFP2-0rpl, un outil permettant de détecter spécifiquement l'H202, encodée par un adénovirus. Nous avons fabriqué la sonde mitochondriale à partir de la sonde cytosolique à laquelle une séquence d'adressage mitochondriale a été ajoutée.J'ai d'abord montré que la sonde roGFP2-0rpl était effectivement sensible à l'H202 : elle détecte des concentrations d'H202 relativement faibles, 5 µM dans le cytosol et 20 µM dans la matrice mitochondriale. Ensuite, j'ai observé que la stimulation par le glucose ne provoquait pas de modification de la concentration d'H202 dans le cytosol de la cellule p. Néanmoins, enprésence de 15 µM d'H202 d'origine exogène, j'ai observé une augmentation de l'oxydation de la sonde cytosolique lorsque la concentration de glucose est réduite de 10 à 0.5 mM, suggérant que le glucose protège les cellules p pancréatiques en modulant leur capacité dedégradation de l'H202 exogène. Stimuler des cellules p pancréatiques avec des substrats mitochondriaux insulinosécrétagogues semble également les protéger face à l'H202. Dans la mitochondrie, la sonde roGFP2-0rpl est davantage oxydée que dans le cytosol quelle que soit la concentration de glucose à laquelle les cellules sont exposées. Cependant, j'ai observé une augmentation de l'oxydation de la sonde mitochondriale lors d'une diminution de la concentration de glucose de 10 à 2 mM en absence d'H202 exogène. Ceci suggère que la production mitochondriale d'H202 est plus faible en présence d'une concentration stimulantede glucose ou bien que sa dégradation par les défenses antioxydantes est accélérée. Car en effet, après la surexpression de la mitocatalase dans les cellules p pancréatiques, l'effet du G2 sur la sonde mt-roGFP2-0rpl n'est pas modifié, suggérant qu'il n'y a pas d'augmentation de la production mitochondriale d'H202 lors de l'exposition au G2. ROS have always been considered harmful to pancreatic P-cells because they alter the structure and the function of molecular components of the cell. However, a recent theory grants a beneficial role to H202. In fact, by acting as a secondary messenger, it would have the ability to activate glucose-stimulated insulin secretion. This theory is nevertheless controversed. Indeed, it has been shown that P-cells overexpression of catalase, which decomposes H202 in H20 and 02, does not change the glucose-stimulated insulin secretion.The aim of my master thesis is to investigate thoroughly any change in the concentration of H202 in the P-cells, and more particularly in the cytosol and the mitochondrial matrix of these cells, following the stimulation by different nutrients. For this, we decided to use the ratiometric and proteic probe roGFP2-0rpl, a specific tool for the detection of H202, encoded by an adenovirus. We constructed the mitochondrial probe by adding a mitochondrial targeting sequence to that coding the cytosolic probe.I first showed that roGFP2-0rpl was highly sensitive to H202 : it detected relatively low concentrations of H202, 5 µM in the cytosol and 20 µM in the mitochondrial matrix. Then I observed that the glucose stimulation caused no change in the concentration of H202 in the cytosol of pancreatic P-cells. However, in the presence of 15 µM of exogenous H202, I observed an increase in the oxidation of the cytosolic probe when the glucose concentration was reduced from 10 to 0.5 mM, suggesting that the glucose protects P-cells by modulating their ability to degrade exogenous H202. It seems that the stimulation of pancreatic P-cells with insulin secretagogue mitochondrial substrates also protects them against H202. In the mitochondria, the probe roGFP2-0rp 1 is more oxidized than in the cytosol for any glucose concentration to which the cells are exposed. However, I have observed an increase in the mitochondrial oxidation of the probe during a decrease of the glucose concentration from 10 mM to 2 mM in the absence of exogenous H202. This suggests that the mitochondrial production of H202 was lower in the presence of a stimulating glucose concentration or that its degradation by the antioxidant defenses was accelerated. Indeed, after the overexpression of mitocatalase in pancreatic P-cells, the effect of G2 on the probe mt-roGFP2-0rp 1 was not changed, suggesting that H202 production does not increase upon exposure to G2 .
Insulin-Secreting Cells --- Cytosol --- mitochondrial processing peptidase
Choose an application
Pancreatic islets play an essential role in glucose homeostasis due to the fact that they secrete the only hypoglycaemic hormone, insulin, and hyperglycaemic hormone, glucagon. In β-cells, glucose stimulates insulin secretion by closing ATP sensitive K+ channels (K+-ATP channels) located on the plasma membrane. Closure of K+-ATP channels leads to membrane depolarization followed by activation of voltage-gated Ca2+ channels. The subsequent increase of [Ca2+]c triggers insulin secretion. On the other hand in α-cells, glucose inhibits glucagon secretion by an unknown mechanism.
The aim of this work is to understand the way glucose influence isolated α-cells. Study of α-cells is difficult because this cell type is not easily identifiable and is present in small quantity in islets. To get round this problem, we used a new genetically modified mouse model (expressing EYFP specifically under the control of insulin or glucagon promoter) allowing fast identification of α or β-cells. We put in evidence existence of K+-ATP channels in α-cells. We showed that contrary to β-cells, variations in glucose concentration does not affect neither K+-ATP channels activity nor [Ca2+]c of α-cells. We also noted that inhibition of glucose metabolism, thus diminution of ATP synthesis stimulates K+-ATP channels activity, α-cells are equipped with voltage-gated channels which identify is matter of controversy. Our study reveals that Ca2+ influx occurring under low glucose conditions depends on opening of voltage-gated L type Ca2+ channels. [Ca2+]c decreases when mitochondrial metabolism is inhibited or when K+-ATP channels are closed. NAD(P)H production during glycolysis reflects ATP synthesis by mitochondria. We have found that neither glucose nor pyruvate and α-ketoisocaproate (KIC) influence α-cells NAD(P)H fluorescence, whereas β-cells respond to both glucose and KIC. Altogether, these results suggest that, as in β-cells, K+-ATP channels activity modulate α-cells [Ca2+]c. In addition, glucose does not affect NAD(P)-H fluorescenceα, K+-ATP channels activity and [Ca2+]c. Therefore, it is proposed that regulation of glucagon secretion occurs through paracrine effects of glucose Etant donné qu’ils sécrètent la seule hormone hypoglycémiante, l’insuline, et une hormone hyperglycémiante, le glucagon, les îlots pancréatiques jouent un rôle essentiel dans l’homéostasie glucidique. Dans la cellule β, le glucose stimule la sécrétion d’insuline en fermant les canaux K+ sensibles à l’ATP (les canaux K+-ATP) situés au niveau de la membrane plasmique. La fermeture de ces canaux entraîne une dépolarisation membranaire activant les canaux Ca2+ voltage-dépendants. L’influx de Ca2+ qui en résulte, augmente la [Ca2+]c et déclenche la sécrétion d’insuline. D’autre part dans la cellule α, le glucose inhibe la sécrétion de glucagon par un mécanisme inconnu. La compréhension du mode d’action du glucose sur les cellules α isolées est l’objectif premier de ce mémoire. L’étude de la cellule α n’est pas évidente car ce type cellulaire est difficilement identifiable et n’est présent qu’en faible quantité au sein des îlots. Pour contourner ce problème, nous avons donc utilisé un nouveau modèle de souris génétiquement modifiées (exprimant l’EYFP spécifiquement sous le contrôle du promoteur de l’insuline ou du glucagon) permettant l’identification rapide des cellules α ou des cellules β. Sur base de nos connaissances de la cellule β, nous avons mis en évidence l’existence des canaux K+-ATP dans les cellules α. Nous avons montré que, à l’inverse des cellules β, les variations de la concentration en glucose n’affectent pas ni l’activité des canaux K+-ATP, ni la [ca2+]c des cellules α. Nous avons également constaté qu’un inhibition du métabolisme du glucose, et donc une diminution de la synthèse d’ATP, stimule l’activité des canaux K+-ATP. La cellule α est équipée de canaux voltage-dépendants dont l’identité est controversée. Notre étude a révélé que l’influx de Ca2+ présent spontanément à une faible concentration en glucose passe par les canaux Ca2+ voltage dépendant de type L. La [Ca2+]c diminue lorsque le métabolisme du glucose est inhibé, ou lorsque les canaux K+-ATP sont ouverts, et elle augmente lorsque les canaux K+-ATP sont fermés. Ces données suggèrent que ces canaux K+ modulent l’influx de Ca2+. La production de NAD(P)H lors de la glycolyse reflète la synthèse d’ATP par les mitochondries. Il s’est avéré que ni le glucose et ni le pyruvate et l’ α-cétoisocaproate, deux substances dont le métabolisme alimente le cycle de Krebs, n’influencent aucunement la fluorescence du NAD(P)H des cellules α, tandis que les cellules β répondent au glucose et au KIC. Globalement, nos résultats suggèrent que dans les cellules α les canaux K+-ATP modulent la [Ca2+]c comme dans les cellules β. De plus, le glucose et son métabolisme n’affectent pas la séquence d’évènements aboutissant à la sécrétion du glucagon. Enfin, l’absence d’effet du glucose sur des cellules α isolées suggère que le glucose agit sur les cellules à glucagon via des facteurs paracrines
Islets of Langerhans --- Cytosol --- Glucose --- Pancreas --- Mice --- Mitochondrial K(ATP) channel
Choose an application
Bile Acids and Salts --- Microsomes, Liver --- Proteins --- Cytosol --- Steroid Hydroxylases --- biosynthesis --- enzymology --- isolation & purification --- metabolism
Choose an application
CELL BIOLOGY --- CELL MORPHOLOGY --- CELLS --- RESEARCH --- PLASMA MEMBRANE --- EXTRACELLULAR SPACES --- CELL COMMUNICATION --- CYTOSOL --- MITOCHONDRIA --- PEROXISOMES --- CYTOSKELETON --- CELL MEMBRANES --- CELL NUCLEUS --- NUCLEOLUS --- PROTEIN SYNTHESIS --- TEACHING MATERIALS --- FUNCTIONS --- BIOCHEMISTRY --- METHODS --- POLARITY
Choose an application
Histology. Cytology --- Physiology of nerves and sense organs --- Nuclear receptors (Biochemistry) --- Cell receptors --- Récepteurs nucléaires (Biochimie) --- Récepteurs cellulaires --- Receptors, Cytoplasmic and Nuclear --- Periodicals --- Périodiques --- Receptors, Cytoplasmic and Nuclear. --- Nuclear hormone receptors --- Receptors, Nuclear (Biochemistry) --- Receptors, Nuclear hormone --- Cytoplasmic Hormone Receptors --- Cytoplasmic Receptors --- Cytosol and Nuclear Receptors --- Intracellular Membrane Receptors --- Nuclear Hormone Receptors --- Nuclear Receptors --- Receptors, Cytoplasmic --- Receptors, Cytosol and Nuclear --- Receptors, Cytosolic and Nuclear --- Receptors, Intracellular Membrane --- Receptors, Nuclear --- Receptors, Nuclear and Cytoplasmic --- Cytoplasmic and Nuclear Receptors --- Cytosolic and Nuclear Receptors --- Hormone Receptors, Cytoplasmic --- Hormone Receptors, Nuclear --- Nuclear and Cytoplasmic Receptors --- Membrane Receptors, Intracellular --- Receptors, Cytoplasmic Hormone --- Receptors, Nuclear Hormone --- Hormone receptors --- Transcription factors --- Hormones --- Biology. --- Cytology --- Cytoplasmic Receptor --- Nuclear Hormone Receptor --- Nuclear Receptor --- Hormone Receptor, Nuclear --- Receptor, Cytoplasmic --- Receptor, Nuclear --- Receptor, Nuclear Hormone
Choose an application
Celbiologie --- Celfysiologie --- Celstructuren --- 576 --- 573.2 --- Histologie --- Cells. --- 576.31 --- #WPLT:dd.Prof.Vanlaere --- #WPLT:kand --- #WPLT:syst --- biologie --- DNA --- celbiologie --- celdeling --- cellen --- 57 --- 575.8 --- 576.3 --- 600.51 --- Bio-energetica --- Cytosol --- DNA deoxyribonucleic acid --- Eiwitsynthese --- Meiose --- Membranen --- Mitose --- Ribosomen --- biofysica --- celfysiologie --- celleer --- cytologie --- differentiatie celleer --- evolutie --- genetica --- genetische manipulatie --- histologie --- membranen --- metabolisme --- moleculaire biologie --- organellen --- translatie --- Biologie --- Cel --- Cytologie (celleer) --- Membraan --- anatomie --- biochemie --- fysiologie --- microbiologie --- Cell --- 576.31 Cell morphology --- Cell morphology --- 576 Cellular and subcellular biology. Cytology --- Cellular and subcellular biology. Cytology --- Cel- en weefselleer --- Anatomie - Cel- en weefselleer --- Cell Biology --- Biologie: cellen --- membranen (biologie) --- Histology. Cytology --- celprocessen --- Cells --- fotosynthese
Choose an application
Nuclear Receptors are inducible transcription factors that mediate complex effects on development, differentiation and homeostasis. They regulate the transcription of their target genes through binding to DNA sequences.*Analysis of Nuclear Receptor Ligands*Structure/Function Analysis of Nuclear Receptors*Analysis of Nuclear Receptor Co-Factors and Chromatin Remodeling
Nuclear receptors (Biochemistry). --- Laboratory Chemicals --- Proteins --- DNA-Binding Proteins --- Investigative Techniques --- Transcription Factors --- Biochemical Phenomena --- Pharmacological Phenomena --- Physiological Phenomena --- Analytical, Diagnostic and Therapeutic Techniques and Equipment --- Amino Acids, Peptides, and Proteins --- Specialty Uses of Chemicals --- Chemical Phenomena --- Phenomena and Processes --- Chemical Actions and Uses --- Chemicals and Drugs --- Receptors, Cytoplasmic and Nuclear --- Structure-Activity Relationship --- Models, Animal --- Ligands --- Human Anatomy & Physiology --- Health & Biological Sciences --- Animal Biochemistry --- Experimental Animal Models --- Laboratory Animal Models --- Animal Model --- Animal Model, Experimental --- Animal Model, Laboratory --- Animal Models --- Animal Models, Experimental --- Animal Models, Laboratory --- Experimental Animal Model --- Laboratory Animal Model --- Model, Animal --- Model, Experimental Animal --- Model, Laboratory Animal --- Models, Experimental Animal --- Models, Laboratory Animal --- Animal Experimentation --- Relationship, Structure-Activity --- Relationships, Structure-Activity --- Structure Activity Relationship --- Structure-Activity Relationships --- Cytoplasmic Hormone Receptors --- Cytoplasmic Receptors --- Cytosol and Nuclear Receptors --- Intracellular Membrane Receptors --- Nuclear Hormone Receptors --- Nuclear Receptors --- Receptors, Cytoplasmic --- Receptors, Cytosol and Nuclear --- Receptors, Cytosolic and Nuclear --- Receptors, Intracellular Membrane --- Receptors, Nuclear --- Receptors, Nuclear and Cytoplasmic --- Cytoplasmic and Nuclear Receptors --- Cytosolic and Nuclear Receptors --- Hormone Receptors, Cytoplasmic --- Hormone Receptors, Nuclear --- Nuclear and Cytoplasmic Receptors --- Membrane Receptors, Intracellular --- Receptors, Cytoplasmic Hormone --- Receptors, Nuclear Hormone --- Hormones --- Chemical Phenomenon --- Chemical Process --- Physical Chemistry Phenomena --- Physical Chemistry Process --- Physicochemical Phenomenon --- Physicochemical Process --- Chemical Concepts --- Chemical Processes --- Physical Chemistry Concepts --- Physical Chemistry Processes --- Physicochemical Concepts --- Physicochemical Phenomena --- Physicochemical Processes --- Chemical Concept --- Chemistry Process, Physical --- Chemistry Processes, Physical --- Concept, Chemical --- Concept, Physical Chemistry --- Concept, Physicochemical --- Concepts, Chemical --- Concepts, Physical Chemistry --- Concepts, Physicochemical --- Phenomena, Chemical --- Phenomena, Physical Chemistry --- Phenomena, Physicochemical --- Phenomenon, Chemical --- Phenomenon, Physicochemical --- Physical Chemistry Concept --- Physicochemical Concept --- Process, Chemical --- Process, Physical Chemistry --- Process, Physicochemical --- Processes, Chemical --- Processes, Physical Chemistry --- Processes, Physicochemical --- Specialty Chemicals and Products --- Physiological Concepts --- Physiological Phenomenon --- Physiological Process --- Physiological Processes --- Concept, Physiological --- Concepts, Physiological --- Phenomena, Physiological --- Phenomenas, Physiological --- Phenomenon, Physiological --- Physiological Concept --- Process, Physiological --- Processes, Physiological --- Pharmacologic Phenomena --- Pharmacologic Phenomenon --- Pharmacologic Process --- Pharmacological Concepts --- Pharmacological Phenomenon --- Pharmacologic Processes --- Pharmacological Processes --- Concept, Pharmacological --- Concepts, Pharmacological --- Pharmacological Concept --- Phenomena, Pharmacologic --- Phenomena, Pharmacological --- Phenomenon, Pharmacologic --- Phenomenon, Pharmacological --- Process, Pharmacologic --- Processes, Pharmacologic --- Processes, Pharmacological --- Biochemical Concepts --- Biochemical Phenomenon --- Biochemical Process --- Phenomena, Biochemical --- Biochemical Processes --- Biochemical Concept --- Concept, Biochemical --- Concepts, Biochemical --- Phenomenon, Biochemical --- Process, Biochemical --- Processes, Biochemical --- Molecular Biology --- Transcription Factor --- Factor, Transcription --- Factors, Transcription --- Gene Expression Regulation --- Transcription, Genetic --- Investigative Technics --- Investigative Technic --- Investigative Technique --- Technic, Investigative --- Technics, Investigative --- Technique, Investigative --- Techniques, Investigative --- DNA Binding Protein --- DNA Single-Stranded Binding Protein --- SS DNA BP --- Single-Stranded DNA-Binding Protein --- DNA Helix Destabilizing Proteins --- Single-Stranded DNA Binding Proteins --- Binding Protein, DNA --- DNA Binding Proteins --- DNA Single Stranded Binding Protein --- DNA-Binding Protein, Single-Stranded --- Single Stranded DNA Binding Protein --- Single Stranded DNA Binding Proteins --- Gene Products, Protein --- Gene Proteins --- Protein Gene Products --- Proteins, Gene --- Molecular Mechanisms of Pharmacological Action --- Chemicals, Laboratory --- Ligand --- Cytoplasmic Receptor --- Nuclear Hormone Receptor --- Nuclear Receptor --- Hormone Receptor, Nuclear --- Receptor, Cytoplasmic --- Receptor, Nuclear --- Receptor, Nuclear Hormone --- DNA-Binding Protein --- Protein, DNA-Binding --- Protein --- Hormone receptors. --- Nuclear receptors (Biochemistry) --- Receptor-ligand complexes.
Choose an application
This book serves as a treasure for all those who have an interest in nuclear receptor coregulators and human diseases. Written by experts in the field, each chapter provides comprehensive, up-to-date information on the physiologic and pathologic roles of coregulators in specific organ systems, giving biomedical students; basic and clinical researchers; and educators in diverse sub-specialties a thorough summary of the overall subject. Readers will be able to understand the important current information and views on specific coactivators and corepressors and their roles in the pathogenesis of
Nuclear receptors (Biochemistry). --- Pathology, Molecular. --- Pathology, Molecular --- Nuclear receptors (Biochemistry) --- Proteins --- Genetic Processes --- Biochemical Processes --- Cell Physiological Processes --- Gene Expression --- DNA-Binding Proteins --- Amino Acids, Peptides, and Proteins --- Biochemical Phenomena --- Chemical Processes --- Cell Physiological Phenomena --- Genetic Phenomena --- Phenomena and Processes --- Chemicals and Drugs --- Chemical Phenomena --- Signal Transduction --- Transcription, Genetic --- Gene Expression Regulation --- Transcription Factors --- Receptors, Cytoplasmic and Nuclear --- Medicine --- Biology --- Health & Biological Sciences --- Cytology --- Pathology --- Cytoplasmic Hormone Receptors --- Cytoplasmic Receptors --- Cytosol and Nuclear Receptors --- Intracellular Membrane Receptors --- Nuclear Hormone Receptors --- Nuclear Receptors --- Receptors, Cytoplasmic --- Receptors, Cytosol and Nuclear --- Receptors, Cytosolic and Nuclear --- Receptors, Intracellular Membrane --- Receptors, Nuclear --- Receptors, Nuclear and Cytoplasmic --- Cytoplasmic Receptor --- Cytoplasmic and Nuclear Receptors --- Cytosolic and Nuclear Receptors --- Hormone Receptors, Cytoplasmic --- Hormone Receptors, Nuclear --- Nuclear Hormone Receptor --- Nuclear Receptor --- Nuclear and Cytoplasmic Receptors --- Hormone Receptor, Nuclear --- Membrane Receptors, Intracellular --- Receptor, Cytoplasmic --- Receptor, Nuclear --- Receptor, Nuclear Hormone --- Receptors, Cytoplasmic Hormone --- Receptors, Nuclear Hormone --- Hormones --- Transcription Factor --- Factor, Transcription --- Factors, Transcription --- Expression Regulation, Gene --- Regulation, Gene Action --- Regulation, Gene Expression --- Gene Action Regulation --- Regulation of Gene Expression --- RNAi Therapeutics --- Gene Regulatory Networks --- Genetic Transcription --- DNA, Ribosomal --- Antisense Elements (Genetics) --- Receptor Mediated Signal Transduction --- Signal Transduction Pathways --- Signal Transduction Systems --- Cell Signaling --- Receptor-Mediated Signal Transduction --- Signal Pathways --- Pathway, Signal --- Pathway, Signal Transduction --- Pathways, Signal --- Pathways, Signal Transduction --- Receptor-Mediated Signal Transductions --- Signal Pathway --- Signal Transduction Pathway --- Signal Transduction System --- Signal Transduction, Receptor-Mediated --- Signal Transductions --- Signal Transductions, Receptor-Mediated --- System, Signal Transduction --- Systems, Signal Transduction --- Transduction, Signal --- Transductions, Signal --- Cell Communication --- Receptor-CD3 Complex, Antigen, T-Cell --- Receptor Cross-Talk --- Feedback, Physiological --- Gasotransmitters --- Chemical Phenomenon --- Chemical Process --- Physical Chemistry Phenomena --- Physical Chemistry Process --- Physicochemical Phenomenon --- Physicochemical Process --- Chemical Concepts --- Physical Chemistry Concepts --- Physical Chemistry Processes --- Physicochemical Concepts --- Physicochemical Phenomena --- Physicochemical Processes --- Chemical Concept --- Chemistry Process, Physical --- Chemistry Processes, Physical --- Concept, Chemical --- Concept, Physical Chemistry --- Concept, Physicochemical --- Concepts, Chemical --- Concepts, Physical Chemistry --- Concepts, Physicochemical --- Phenomena, Chemical --- Phenomena, Physical Chemistry --- Phenomena, Physicochemical --- Phenomenon, Chemical --- Phenomenon, Physicochemical --- Physical Chemistry Concept --- Physicochemical Concept --- Process, Chemical --- Process, Physical Chemistry --- Process, Physicochemical --- Processes, Chemical --- Processes, Physical Chemistry --- Processes, Physicochemical --- DNA Binding Protein --- DNA Single-Stranded Binding Protein --- SS DNA BP --- Single-Stranded DNA-Binding Protein --- DNA Helix Destabilizing Proteins --- DNA-Binding Protein --- Single-Stranded DNA Binding Proteins --- Binding Protein, DNA --- DNA Binding Proteins --- DNA Single Stranded Binding Protein --- DNA-Binding Protein, Single-Stranded --- Protein, DNA-Binding --- Single Stranded DNA Binding Protein --- Single Stranded DNA Binding Proteins --- Expression, Gene --- Expressions, Gene --- Gene Expressions --- Gene Expression Profiling --- Cell Physiological Phenomenon --- Cell Physiological Process --- Physiology, Cell --- Cell Physiology --- Phenomena, Cell Physiological --- Phenomenon, Cell Physiological --- Physiological Process, Cell --- Physiological Processes, Cell --- Process, Cell Physiological --- Processes, Cell Physiological --- Cells --- Biochemical Concepts --- Biochemical Phenomenon --- Biochemical Process --- Phenomena, Biochemical --- Biochemical Concept --- Concept, Biochemical --- Concepts, Biochemical --- Phenomenon, Biochemical --- Process, Biochemical --- Processes, Biochemical --- Molecular Biology --- Genetic Concepts --- Genetic Phenomenon --- Genetic Process --- Concept, Genetic --- Concepts, Genetic --- Genetic Concept --- Phenomena, Genetic --- Phenomenon, Genetic --- Process, Genetic --- Processes, Genetic --- Gene Products, Protein --- Gene Proteins --- Protein --- Protein Gene Products --- Proteins, Gene --- Molecular Mechanisms of Pharmacological Action --- Nuclear hormone receptors --- Receptors, Nuclear (Biochemistry) --- Receptors, Nuclear hormone --- Hormone receptors --- Transcription factors --- Molecular pathology --- Molecular biology --- Physiology, Pathological --- physiology --- Transcription, Genetic. --- Transcription Factors. --- Genetic Expression Regulation. --- physiology. --- genetics.
Listing 1 - 9 of 9 |
Sort by
|