Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (3)

2020 (3)

Listing 1 - 6 of 6
Sort by

Book
Technologies of Coatings and Surface Hardening for Tool Industry
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The innovative coating and surface hardening technologies developed in recent years allow us to obtain practically any physical–mechanical or crystal–chemical complex properties of the metalworking tool surface layer. Today, the scientific approach to improving the operational characteristics of the tool surface layers produced from traditional tools industrial materials is a highly costly and long-lasting process. Different technological techniques, such as coatings (physical and chemical methods), surface hardening and alloying (chemical-thermal treatment, implantation), a combination of the listed methods, and other solutions are used for this. This edition aims to provide a review of the current state of the research and developments in the field of coatings and surface hardening technologies for cutting and die tools that can ensure a substantial increase of the work resource and reliability of the tool, an increase in productivity of machining, accuracy, and quality of the machined products, reduction in the material capacity of the production, and other important manufacturing factors. In doing so, the main emphasis should be on the results of the engineering works that have had a prosperous approbation in a laboratory or real manufacturing conditions.

Keywords

Technology: general issues --- hierarchical structure --- multilayer PVD coating --- stochastic process --- convection and diffusion --- reactive magnetron sputtering --- argon --- nitrogen and ethylene --- TaSi2 --- Ta3B4 and ZrB2 --- SHS and hot pressing --- composition and structure --- hardness and elastic modulus --- friction coefficient and wear resistance --- oxidation resistance --- diamond-like coatings --- nitride sublayer --- index of plasticity --- adhesive bond strength --- end mills --- hard alloy --- wear resistance --- milling of aluminum alloys --- milling of structural steels --- surface quality --- modeling --- carbon flux --- low-pressure vacuum carburizing --- medium-high alloy steel --- nanolayered PVD coating --- microdroplets --- crack formation --- tool wear --- nanolayered coating --- microparticles --- monocrystalline --- high-pressure, high-temperature (HPHT) diamond --- chemical vapor deposition (CVD) diamond --- high-fluence ion irradiation --- Ar+ --- C+ --- SEM --- AFM --- Raman spectra --- electrical conductivity --- AlCr-based --- CrAl-based --- (AlCrX)N --- (Al1−xCrx)2O3 --- arc --- HiPIMS --- nanolayers --- nanocomposite --- structure --- properties --- roughness --- coatings --- finish turning --- PCBN --- tempered steel --- micro cutters --- cutting edges --- wear-resistance --- coating deposition --- adhesion --- plasma --- ions --- charge exchange collisions --- fast gas atoms --- etching --- sharpening --- diamond-like carbon coating --- high-speed milling --- nickel alloy --- SiAlON --- spark plasma sintering --- adaptive coating --- adaptive material --- composite powder HSS --- cutting tool --- secondary structures --- surface layer --- thermal-force loads --- hierarchical structure --- multilayer PVD coating --- stochastic process --- convection and diffusion --- reactive magnetron sputtering --- argon --- nitrogen and ethylene --- TaSi2 --- Ta3B4 and ZrB2 --- SHS and hot pressing --- composition and structure --- hardness and elastic modulus --- friction coefficient and wear resistance --- oxidation resistance --- diamond-like coatings --- nitride sublayer --- index of plasticity --- adhesive bond strength --- end mills --- hard alloy --- wear resistance --- milling of aluminum alloys --- milling of structural steels --- surface quality --- modeling --- carbon flux --- low-pressure vacuum carburizing --- medium-high alloy steel --- nanolayered PVD coating --- microdroplets --- crack formation --- tool wear --- nanolayered coating --- microparticles --- monocrystalline --- high-pressure, high-temperature (HPHT) diamond --- chemical vapor deposition (CVD) diamond --- high-fluence ion irradiation --- Ar+ --- C+ --- SEM --- AFM --- Raman spectra --- electrical conductivity --- AlCr-based --- CrAl-based --- (AlCrX)N --- (Al1−xCrx)2O3 --- arc --- HiPIMS --- nanolayers --- nanocomposite --- structure --- properties --- roughness --- coatings --- finish turning --- PCBN --- tempered steel --- micro cutters --- cutting edges --- wear-resistance --- coating deposition --- adhesion --- plasma --- ions --- charge exchange collisions --- fast gas atoms --- etching --- sharpening --- diamond-like carbon coating --- high-speed milling --- nickel alloy --- SiAlON --- spark plasma sintering --- adaptive coating --- adaptive material --- composite powder HSS --- cutting tool --- secondary structures --- surface layer --- thermal-force loads


Book
Technologies of Coatings and Surface Hardening for Tool Industry
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The innovative coating and surface hardening technologies developed in recent years allow us to obtain practically any physical–mechanical or crystal–chemical complex properties of the metalworking tool surface layer. Today, the scientific approach to improving the operational characteristics of the tool surface layers produced from traditional tools industrial materials is a highly costly and long-lasting process. Different technological techniques, such as coatings (physical and chemical methods), surface hardening and alloying (chemical-thermal treatment, implantation), a combination of the listed methods, and other solutions are used for this. This edition aims to provide a review of the current state of the research and developments in the field of coatings and surface hardening technologies for cutting and die tools that can ensure a substantial increase of the work resource and reliability of the tool, an increase in productivity of machining, accuracy, and quality of the machined products, reduction in the material capacity of the production, and other important manufacturing factors. In doing so, the main emphasis should be on the results of the engineering works that have had a prosperous approbation in a laboratory or real manufacturing conditions.

Keywords

Technology: general issues --- hierarchical structure --- multilayer PVD coating --- stochastic process --- convection and diffusion --- reactive magnetron sputtering --- argon --- nitrogen and ethylene --- TaSi2 --- Ta3B4 and ZrB2 --- SHS and hot pressing --- composition and structure --- hardness and elastic modulus --- friction coefficient and wear resistance --- oxidation resistance --- diamond-like coatings --- nitride sublayer --- index of plasticity --- adhesive bond strength --- end mills --- hard alloy --- wear resistance --- milling of aluminum alloys --- milling of structural steels --- surface quality --- modeling --- carbon flux --- low-pressure vacuum carburizing --- medium-high alloy steel --- nanolayered PVD coating --- microdroplets --- crack formation --- tool wear --- nanolayered coating --- microparticles --- monocrystalline --- high-pressure, high-temperature (HPHT) diamond --- chemical vapor deposition (CVD) diamond --- high-fluence ion irradiation --- Ar+ --- C+ --- SEM --- AFM --- Raman spectra --- electrical conductivity --- AlCr-based --- CrAl-based --- (AlCrX)N --- (Al1−xCrx)2O3 --- arc --- HiPIMS --- nanolayers --- nanocomposite --- structure --- properties --- roughness --- coatings --- finish turning --- PCBN --- tempered steel --- micro cutters --- cutting edges --- wear-resistance --- coating deposition --- adhesion --- plasma --- ions --- charge exchange collisions --- fast gas atoms --- etching --- sharpening --- diamond-like carbon coating --- high-speed milling --- nickel alloy --- SiAlON --- spark plasma sintering --- adaptive coating --- adaptive material --- composite powder HSS --- cutting tool --- secondary structures --- surface layer --- thermal-force loads


Book
Technologies of Coatings and Surface Hardening for Tool Industry
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The innovative coating and surface hardening technologies developed in recent years allow us to obtain practically any physical–mechanical or crystal–chemical complex properties of the metalworking tool surface layer. Today, the scientific approach to improving the operational characteristics of the tool surface layers produced from traditional tools industrial materials is a highly costly and long-lasting process. Different technological techniques, such as coatings (physical and chemical methods), surface hardening and alloying (chemical-thermal treatment, implantation), a combination of the listed methods, and other solutions are used for this. This edition aims to provide a review of the current state of the research and developments in the field of coatings and surface hardening technologies for cutting and die tools that can ensure a substantial increase of the work resource and reliability of the tool, an increase in productivity of machining, accuracy, and quality of the machined products, reduction in the material capacity of the production, and other important manufacturing factors. In doing so, the main emphasis should be on the results of the engineering works that have had a prosperous approbation in a laboratory or real manufacturing conditions.

Keywords

hierarchical structure --- multilayer PVD coating --- stochastic process --- convection and diffusion --- reactive magnetron sputtering --- argon --- nitrogen and ethylene --- TaSi2 --- Ta3B4 and ZrB2 --- SHS and hot pressing --- composition and structure --- hardness and elastic modulus --- friction coefficient and wear resistance --- oxidation resistance --- diamond-like coatings --- nitride sublayer --- index of plasticity --- adhesive bond strength --- end mills --- hard alloy --- wear resistance --- milling of aluminum alloys --- milling of structural steels --- surface quality --- modeling --- carbon flux --- low-pressure vacuum carburizing --- medium-high alloy steel --- nanolayered PVD coating --- microdroplets --- crack formation --- tool wear --- nanolayered coating --- microparticles --- monocrystalline --- high-pressure, high-temperature (HPHT) diamond --- chemical vapor deposition (CVD) diamond --- high-fluence ion irradiation --- Ar+ --- C+ --- SEM --- AFM --- Raman spectra --- electrical conductivity --- AlCr-based --- CrAl-based --- (AlCrX)N --- (Al1−xCrx)2O3 --- arc --- HiPIMS --- nanolayers --- nanocomposite --- structure --- properties --- roughness --- coatings --- finish turning --- PCBN --- tempered steel --- micro cutters --- cutting edges --- wear-resistance --- coating deposition --- adhesion --- plasma --- ions --- charge exchange collisions --- fast gas atoms --- etching --- sharpening --- diamond-like carbon coating --- high-speed milling --- nickel alloy --- SiAlON --- spark plasma sintering --- adaptive coating --- adaptive material --- composite powder HSS --- cutting tool --- secondary structures --- surface layer --- thermal-force loads


Book
Special Issue of the Manufacturing Engineering Society 2019 (SIMES-2019)
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book derives from the Special Issue of the Manufacturing Engineering Society 2019 (SIMES-2019) that has been launched as a joint issue of the journals Materials and Applied Sciences. The 29 contributions published in this Special Issue of Materials present cutting-edge advances in the field of manufacturing engineering focusing on additive manufacturing and 3D printing; advances and innovations in manufacturing processes; sustainable and green manufacturing; manufacturing of new materials; metrology and quality in manufacturing; industry 4.0; design, modeling, and simulation in manufacturing engineering; and manufacturing engineering and society. Among them, the topic "Additive Manufacturing and 3D Printing" has attracted a large number of contributions in this journal due to its widespread popularity and potential.

Keywords

History of engineering & technology --- Bayesian inference --- control chart --- dynamic methodology --- hidden Markov chain --- occupational accident --- risk assessment --- risk control --- risk management --- Fused Deposition Modeling --- roughness --- Polylactic Acid --- print orientation angle --- build angle --- titanium alloys --- sustainable lubrication --- cryogenic lubrication --- MQL --- OD grinding --- CBN --- dressing --- rotary dresser --- wear --- CVD diamond --- additive manufacturing --- 3D printing --- fused filament fabrication --- flexural properties --- fatigue --- PLA --- cements --- ballast waste --- cornubianite --- mechanical properties --- Spain --- joining --- forming --- sheet–tube connections --- experimentation --- modelling and simulation --- quality enhancement --- process parameters --- design optimization --- calibration artifact --- kinematic support --- dimensional metrology --- machine tool --- length measurement --- rapid prototyping --- efficiency --- printing time --- experimental model --- prepeg --- carbon fiber --- Raman spectroscopy --- AWJM --- waterjet --- CFRP --- kerf taper --- surface quality --- metal forming --- bi-metallic --- cylinders --- compression --- finite elements --- microscopy --- cold expansion --- mandrel --- cold-forming --- swaging --- shipbuilding --- LARG paradigm --- supply chain --- coordinate metrology --- confocal microscopy --- measurement --- calibration --- traceability --- uncertainty --- quality assessment --- digital image correlation --- indentation process --- incremental forming --- finite element method --- material flow --- AWJM (Abrasive waterjet machining) --- CFRTP (Carbon fiber-reinforced thermoplastics) --- RSM (response surface methodology) --- ANOVA (Analysis of variance) --- C/TPU (carbon/polyurethane) --- image processing --- position control --- accuracy --- micromachines --- position compensation --- inverse conical perspective --- micromanufacturing --- manufacturing systems --- mechatronics --- FDM --- bimodulus materials --- standards --- finite element analysis (FEA) --- ABS --- anisotropy --- infill density --- layer orientation --- ASTM D638–14:2014 --- ISO 527–2:2012 --- grounding electrodes in two-layered soils --- step and touch potentials --- step potentials upper bound --- orthoses --- prostheses --- fused deposition modeling --- laminated object manufacturing --- selective laser sintering --- laser tracker --- Monte Carlo method --- verification --- green manufacturing --- sustainability metrics --- cleaner product life cycle --- material removal processes --- hybrid components --- light alloys --- magnesium --- aluminum --- drilling --- dry machining --- cold compressed air --- lubrication and cooling systems --- arithmetical mean roughness --- Ra --- average maximum height --- Rz --- repair and maintenance operations --- fused deposition modelling --- composites --- polymer injection moulding --- polyamide --- metal matrix composite --- Al-SiC --- microstructure --- machining --- cooling compressed air --- thrust force --- energy --- material removed rate --- PEEK-GF30 --- multi-response optimization --- sustainable manufacturing --- metrology --- industry 4.0 --- modeling and simulation --- quality in manufacturing --- technological and industrial heritage --- Bayesian inference --- control chart --- dynamic methodology --- hidden Markov chain --- occupational accident --- risk assessment --- risk control --- risk management --- Fused Deposition Modeling --- roughness --- Polylactic Acid --- print orientation angle --- build angle --- titanium alloys --- sustainable lubrication --- cryogenic lubrication --- MQL --- OD grinding --- CBN --- dressing --- rotary dresser --- wear --- CVD diamond --- additive manufacturing --- 3D printing --- fused filament fabrication --- flexural properties --- fatigue --- PLA --- cements --- ballast waste --- cornubianite --- mechanical properties --- Spain --- joining --- forming --- sheet–tube connections --- experimentation --- modelling and simulation --- quality enhancement --- process parameters --- design optimization --- calibration artifact --- kinematic support --- dimensional metrology --- machine tool --- length measurement --- rapid prototyping --- efficiency --- printing time --- experimental model --- prepeg --- carbon fiber --- Raman spectroscopy --- AWJM --- waterjet --- CFRP --- kerf taper --- surface quality --- metal forming --- bi-metallic --- cylinders --- compression --- finite elements --- microscopy --- cold expansion --- mandrel --- cold-forming --- swaging --- shipbuilding --- LARG paradigm --- supply chain --- coordinate metrology --- confocal microscopy --- measurement --- calibration --- traceability --- uncertainty --- quality assessment --- digital image correlation --- indentation process --- incremental forming --- finite element method --- material flow --- AWJM (Abrasive waterjet machining) --- CFRTP (Carbon fiber-reinforced thermoplastics) --- RSM (response surface methodology) --- ANOVA (Analysis of variance) --- C/TPU (carbon/polyurethane) --- image processing --- position control --- accuracy --- micromachines --- position compensation --- inverse conical perspective --- micromanufacturing --- manufacturing systems --- mechatronics --- FDM --- bimodulus materials --- standards --- finite element analysis (FEA) --- ABS --- anisotropy --- infill density --- layer orientation --- ASTM D638–14:2014 --- ISO 527–2:2012 --- grounding electrodes in two-layered soils --- step and touch potentials --- step potentials upper bound --- orthoses --- prostheses --- fused deposition modeling --- laminated object manufacturing --- selective laser sintering --- laser tracker --- Monte Carlo method --- verification --- green manufacturing --- sustainability metrics --- cleaner product life cycle --- material removal processes --- hybrid components --- light alloys --- magnesium --- aluminum --- drilling --- dry machining --- cold compressed air --- lubrication and cooling systems --- arithmetical mean roughness --- Ra --- average maximum height --- Rz --- repair and maintenance operations --- fused deposition modelling --- composites --- polymer injection moulding --- polyamide --- metal matrix composite --- Al-SiC --- microstructure --- machining --- cooling compressed air --- thrust force --- energy --- material removed rate --- PEEK-GF30 --- multi-response optimization --- sustainable manufacturing --- metrology --- industry 4.0 --- modeling and simulation --- quality in manufacturing --- technological and industrial heritage


Book
Special Issue of the Manufacturing Engineering Society 2019 (SIMES-2019)
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book derives from the Special Issue of the Manufacturing Engineering Society 2019 (SIMES-2019) that has been launched as a joint issue of the journals Materials and Applied Sciences. The 29 contributions published in this Special Issue of Materials present cutting-edge advances in the field of manufacturing engineering focusing on additive manufacturing and 3D printing; advances and innovations in manufacturing processes; sustainable and green manufacturing; manufacturing of new materials; metrology and quality in manufacturing; industry 4.0; design, modeling, and simulation in manufacturing engineering; and manufacturing engineering and society. Among them, the topic "Additive Manufacturing and 3D Printing" has attracted a large number of contributions in this journal due to its widespread popularity and potential.

Keywords

History of engineering & technology --- Bayesian inference --- control chart --- dynamic methodology --- hidden Markov chain --- occupational accident --- risk assessment --- risk control --- risk management --- Fused Deposition Modeling --- roughness --- Polylactic Acid --- print orientation angle --- build angle --- titanium alloys --- sustainable lubrication --- cryogenic lubrication --- MQL --- OD grinding --- CBN --- dressing --- rotary dresser --- wear --- CVD diamond --- additive manufacturing --- 3D printing --- fused filament fabrication --- flexural properties --- fatigue --- PLA --- cements --- ballast waste --- cornubianite --- mechanical properties --- Spain --- joining --- forming --- sheet–tube connections --- experimentation --- modelling and simulation --- quality enhancement --- process parameters --- design optimization --- calibration artifact --- kinematic support --- dimensional metrology --- machine tool --- length measurement --- rapid prototyping --- efficiency --- printing time --- experimental model --- prepeg --- carbon fiber --- Raman spectroscopy --- AWJM --- waterjet --- CFRP --- kerf taper --- surface quality --- metal forming --- bi-metallic --- cylinders --- compression --- finite elements --- microscopy --- cold expansion --- mandrel --- cold-forming --- swaging --- shipbuilding --- LARG paradigm --- supply chain --- coordinate metrology --- confocal microscopy --- measurement --- calibration --- traceability --- uncertainty --- quality assessment --- digital image correlation --- indentation process --- incremental forming --- finite element method --- material flow --- AWJM (Abrasive waterjet machining) --- CFRTP (Carbon fiber-reinforced thermoplastics) --- RSM (response surface methodology) --- ANOVA (Analysis of variance) --- C/TPU (carbon/polyurethane) --- image processing --- position control --- accuracy --- micromachines --- position compensation --- inverse conical perspective --- micromanufacturing --- manufacturing systems --- mechatronics --- FDM --- bimodulus materials --- standards --- finite element analysis (FEA) --- ABS --- anisotropy --- infill density --- layer orientation --- ASTM D638–14:2014 --- ISO 527–2:2012 --- grounding electrodes in two-layered soils --- step and touch potentials --- step potentials upper bound --- orthoses --- prostheses --- fused deposition modeling --- laminated object manufacturing --- selective laser sintering --- laser tracker --- Monte Carlo method --- verification --- green manufacturing --- sustainability metrics --- cleaner product life cycle --- material removal processes --- hybrid components --- light alloys --- magnesium --- aluminum --- drilling --- dry machining --- cold compressed air --- lubrication and cooling systems --- arithmetical mean roughness --- Ra --- average maximum height --- Rz --- repair and maintenance operations --- fused deposition modelling --- composites --- polymer injection moulding --- polyamide --- metal matrix composite --- Al-SiC --- microstructure --- machining --- cooling compressed air --- thrust force --- energy --- material removed rate --- PEEK-GF30 --- multi-response optimization --- sustainable manufacturing --- metrology --- industry 4.0 --- modeling and simulation --- quality in manufacturing --- technological and industrial heritage


Book
Special Issue of the Manufacturing Engineering Society 2019 (SIMES-2019)
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book derives from the Special Issue of the Manufacturing Engineering Society 2019 (SIMES-2019) that has been launched as a joint issue of the journals Materials and Applied Sciences. The 29 contributions published in this Special Issue of Materials present cutting-edge advances in the field of manufacturing engineering focusing on additive manufacturing and 3D printing; advances and innovations in manufacturing processes; sustainable and green manufacturing; manufacturing of new materials; metrology and quality in manufacturing; industry 4.0; design, modeling, and simulation in manufacturing engineering; and manufacturing engineering and society. Among them, the topic "Additive Manufacturing and 3D Printing" has attracted a large number of contributions in this journal due to its widespread popularity and potential.

Keywords

Bayesian inference --- control chart --- dynamic methodology --- hidden Markov chain --- occupational accident --- risk assessment --- risk control --- risk management --- Fused Deposition Modeling --- roughness --- Polylactic Acid --- print orientation angle --- build angle --- titanium alloys --- sustainable lubrication --- cryogenic lubrication --- MQL --- OD grinding --- CBN --- dressing --- rotary dresser --- wear --- CVD diamond --- additive manufacturing --- 3D printing --- fused filament fabrication --- flexural properties --- fatigue --- PLA --- cements --- ballast waste --- cornubianite --- mechanical properties --- Spain --- joining --- forming --- sheet–tube connections --- experimentation --- modelling and simulation --- quality enhancement --- process parameters --- design optimization --- calibration artifact --- kinematic support --- dimensional metrology --- machine tool --- length measurement --- rapid prototyping --- efficiency --- printing time --- experimental model --- prepeg --- carbon fiber --- Raman spectroscopy --- AWJM --- waterjet --- CFRP --- kerf taper --- surface quality --- metal forming --- bi-metallic --- cylinders --- compression --- finite elements --- microscopy --- cold expansion --- mandrel --- cold-forming --- swaging --- shipbuilding --- LARG paradigm --- supply chain --- coordinate metrology --- confocal microscopy --- measurement --- calibration --- traceability --- uncertainty --- quality assessment --- digital image correlation --- indentation process --- incremental forming --- finite element method --- material flow --- AWJM (Abrasive waterjet machining) --- CFRTP (Carbon fiber-reinforced thermoplastics) --- RSM (response surface methodology) --- ANOVA (Analysis of variance) --- C/TPU (carbon/polyurethane) --- image processing --- position control --- accuracy --- micromachines --- position compensation --- inverse conical perspective --- micromanufacturing --- manufacturing systems --- mechatronics --- FDM --- bimodulus materials --- standards --- finite element analysis (FEA) --- ABS --- anisotropy --- infill density --- layer orientation --- ASTM D638–14:2014 --- ISO 527–2:2012 --- grounding electrodes in two-layered soils --- step and touch potentials --- step potentials upper bound --- orthoses --- prostheses --- fused deposition modeling --- laminated object manufacturing --- selective laser sintering --- laser tracker --- Monte Carlo method --- verification --- green manufacturing --- sustainability metrics --- cleaner product life cycle --- material removal processes --- hybrid components --- light alloys --- magnesium --- aluminum --- drilling --- dry machining --- cold compressed air --- lubrication and cooling systems --- arithmetical mean roughness --- Ra --- average maximum height --- Rz --- repair and maintenance operations --- fused deposition modelling --- composites --- polymer injection moulding --- polyamide --- metal matrix composite --- Al-SiC --- microstructure --- machining --- cooling compressed air --- thrust force --- energy --- material removed rate --- PEEK-GF30 --- multi-response optimization --- sustainable manufacturing --- metrology --- industry 4.0 --- modeling and simulation --- quality in manufacturing --- technological and industrial heritage

Listing 1 - 6 of 6
Sort by