Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Hydroxyapatite (HA), Ca5(PO4)3(OH), is a bioceramic well-known in the biomaterial field. Through the last decades, efforts have been particularly developed in the synthesis of nanostructured hydroxyapatite and in the control of its properties, mainly to increase its specific surface area. In order to achieve that, surfactants acting as template during synthesis represent a promising research field. However, no study depicts clearly the behaviour of surfactants in the conditions of HA synthesis, as well as the effect of surfactant concentration on the structure of hydroxyapatite. The goal of this work is to study the behaviour of a cationic surfactant, cetrimonium bromide (CTAB), in conditions of HA synthesis (pH 10.5 and presence of phosphate ions) and to perform HA synthesis with CTAB. To achieve that, different CTAB concentrations ranging from 0.4 to 100 mmol/L were analysed through Dynamic light scattering (DLS) at temperatures of 25 and 50 °C. Results showed that temperature does not impact significantly the CTAB micelles behaviour. Moreover, CTAB forms aggregates at concentrations lower than 10 mmol/L. These aggregates tend to disappear when CTAB concentration increases and unimodal size micelles are formed. HA syntheses were performed using appropriate CTAB concentrations determined by means of DLS results. After synthesis, HA powders have been characterized by FT-IR, TGA, XRD, BET and TEM techniques and have been compared to commercialized HA powder. It is observed that surface area can be undoubtedly increased (up to 150 m²/g) by the use of CTAB surfactant. Moreover, morphology and size of HA particles are impacted by CTAB concentrations. These results are promising and show the importance of surfactant behaviour's comprehension in HA synthesis. This opens new perspectives in the biomaterials domains and especially in bone reconstruction.
hydroxyapatite --- CTAB --- DLS --- wet method --- Ingénierie, informatique & technologie > Multidisciplinaire, généralités & autres
Choose an application
Coffea arabica --- Coffea arabica --- Gossypium hirsutum --- Gossypium hirsutum --- Hevea brasiliensis --- Hevea brasiliensis --- Manihot esculenta --- Manihot esculenta --- Musa --- Musa --- Charcoal --- Charcoal --- DNA. --- DNA --- Extraction --- Extraction --- genetic engineering --- genetic engineering --- RAPD --- RAPD --- Ctab --- Ctab
Choose an application
This Special Issue of Nanomaterials collects a series of original research articles providing new insight into the application of computational quantum physics and chemistry in research on nanomaterials. It illustrates the extension and diversity of the field and indicates some future directions. It provides the reader with an overall view of the latest prospects in this fast evolving and cross-disciplinary field
Research & information: general --- BTF --- TATB --- CL-20 --- cocrystal --- energetic materials --- shock sensitivity --- large-scale ab initio molecular dynamics simulations --- AlN --- low-dimensional material --- atomic cluster --- electronic structure --- HSE06 hybrid functional --- CsPbBr3 --- CsPb2Br5 --- solvent polarity --- CTAB --- phase transition --- high-entropy alloys --- generalized stacking fault energy --- first-principles --- interfacial energy --- surface energy --- nanoparticles --- gold --- ab initio --- molecular mechanics --- fcc Ni --- tilt Σ5(210) grain boundary --- vacancy --- Si and Al impurity --- grain boundary energy --- segregation energy --- defects binding energies --- magnetism --- ferroelectricity --- SnTe --- nanoribbon --- nanoflakes --- critical size --- density-functional theory --- thermodynamics --- silver --- decahedron --- excess energy --- ab initio calculations --- dye-sensitized solar cells --- azobenzene --- density functional theory --- topological insulators --- magnetic doping --- defects --- environment and health --- first-principles physics --- DFT --- hazardous gas --- BTF --- TATB --- CL-20 --- cocrystal --- energetic materials --- shock sensitivity --- large-scale ab initio molecular dynamics simulations --- AlN --- low-dimensional material --- atomic cluster --- electronic structure --- HSE06 hybrid functional --- CsPbBr3 --- CsPb2Br5 --- solvent polarity --- CTAB --- phase transition --- high-entropy alloys --- generalized stacking fault energy --- first-principles --- interfacial energy --- surface energy --- nanoparticles --- gold --- ab initio --- molecular mechanics --- fcc Ni --- tilt Σ5(210) grain boundary --- vacancy --- Si and Al impurity --- grain boundary energy --- segregation energy --- defects binding energies --- magnetism --- ferroelectricity --- SnTe --- nanoribbon --- nanoflakes --- critical size --- density-functional theory --- thermodynamics --- silver --- decahedron --- excess energy --- ab initio calculations --- dye-sensitized solar cells --- azobenzene --- density functional theory --- topological insulators --- magnetic doping --- defects --- environment and health --- first-principles physics --- DFT --- hazardous gas
Choose an application
This Special Issue of Nanomaterials collects a series of original research articles providing new insight into the application of computational quantum physics and chemistry in research on nanomaterials. It illustrates the extension and diversity of the field and indicates some future directions. It provides the reader with an overall view of the latest prospects in this fast evolving and cross-disciplinary field
Research & information: general --- BTF --- TATB --- CL-20 --- cocrystal --- energetic materials --- shock sensitivity --- large-scale ab initio molecular dynamics simulations --- AlN --- low-dimensional material --- atomic cluster --- electronic structure --- HSE06 hybrid functional --- CsPbBr3 --- CsPb2Br5 --- solvent polarity --- CTAB --- phase transition --- high-entropy alloys --- generalized stacking fault energy --- first-principles --- interfacial energy --- surface energy --- nanoparticles --- gold --- ab initio --- molecular mechanics --- fcc Ni --- tilt Σ5(210) grain boundary --- vacancy --- Si and Al impurity --- grain boundary energy --- segregation energy --- defects binding energies --- magnetism --- ferroelectricity --- SnTe --- nanoribbon --- nanoflakes --- critical size --- density-functional theory --- thermodynamics --- silver --- decahedron --- excess energy --- ab initio calculations --- dye-sensitized solar cells --- azobenzene --- density functional theory --- topological insulators --- magnetic doping --- defects --- environment and health --- first-principles physics --- DFT --- hazardous gas --- n/a
Choose an application
This Special Issue of Nanomaterials collects a series of original research articles providing new insight into the application of computational quantum physics and chemistry in research on nanomaterials. It illustrates the extension and diversity of the field and indicates some future directions. It provides the reader with an overall view of the latest prospects in this fast evolving and cross-disciplinary field
BTF --- TATB --- CL-20 --- cocrystal --- energetic materials --- shock sensitivity --- large-scale ab initio molecular dynamics simulations --- AlN --- low-dimensional material --- atomic cluster --- electronic structure --- HSE06 hybrid functional --- CsPbBr3 --- CsPb2Br5 --- solvent polarity --- CTAB --- phase transition --- high-entropy alloys --- generalized stacking fault energy --- first-principles --- interfacial energy --- surface energy --- nanoparticles --- gold --- ab initio --- molecular mechanics --- fcc Ni --- tilt Σ5(210) grain boundary --- vacancy --- Si and Al impurity --- grain boundary energy --- segregation energy --- defects binding energies --- magnetism --- ferroelectricity --- SnTe --- nanoribbon --- nanoflakes --- critical size --- density-functional theory --- thermodynamics --- silver --- decahedron --- excess energy --- ab initio calculations --- dye-sensitized solar cells --- azobenzene --- density functional theory --- topological insulators --- magnetic doping --- defects --- environment and health --- first-principles physics --- DFT --- hazardous gas --- n/a
Choose an application
This Special Issue focuses on the current state-of-the-art of “Polymer Clay Nano-Composites” for biomedical, anticorrosion, antibacterial, and other applications. Clay–polymer composite nanomaterials represent an emerging area of research. Loading polymers with clay particles essentially enhances the composite strength features. Of particular interest are different nano-assembly methods, such as silane mono and multilayers, polyelectrolyte layer-by-layer assembly, and others. An important development was reached for tubular and fibrous clay nanoparticles, such as halloysite, sepiolite, and imogolite. Polymer clay nanoparticles can be prepared as sheets with 1-nm thickness and width of a few hundred nm (e.g., kaolin and montmorillonite). Fibrous clays significantly reinforce the nano-composites in the assembly with biopolymers and other green polymers, leading to functional hybrid bio nano-composites. The scope of this Special Issue comprehensively includes the synthesis and characterization of polymer clay nano-composites used for several applications, including nano-clay polymer composites and hybrid nano-assemblies.
graphene oxide --- n/a --- polysaccharide --- water resistance --- nanocomposites --- layered silicate --- polyimide --- intercalation --- barrier --- composite --- indentation recovery --- ionic network --- organically modified clays --- nanotechnology --- 2-polybutadiene --- doxorubicin --- sericite --- adsorption --- morphology --- phenyltrimethylammonium chloride --- supercritical CO2 --- blowing agent --- halloysite nanotubes --- mechanical properties --- glycerol --- ammonium persulfate --- TGA --- 1 --- interfacial interactions --- carbon fibers --- nanocomposite materials --- silica sol --- N?-methylenebisacrylamide --- intercalation stability --- polymer composites --- clay–polymer nanocomposites --- in-situ intercalation --- attapulgite/polypyrrole nanocomposite --- fish gelatin --- polyacrylic acid --- fuzzy optimization --- AFM --- variable cost --- organic montmorillonite --- positron annihilation --- whey protein isolate --- interface --- CTAB --- N --- hyaluronic acid --- swelling capacity --- water shutoff --- montmorillonite --- sol–gel transition --- in situ polymerization --- hexadecyltrimethylammonium bromide --- clay-amine interaction mechanisms --- gelation kinetics --- FTIR --- surface grafting --- Pareto set --- la uptake and release --- polyamines --- polystyrene foam --- CD44 receptor targeted --- tribological property --- polyethylene oxide --- structure effects --- catalytic composite --- polystyrene --- nanoclay --- thermal stability --- sacrificial bond --- Pd catalysis --- radical polymerization --- dental resins --- reinforcing --- montmorillonite clays --- coatings --- atrazine --- cellulose nanofibrils --- soap-free emulsion polymerization --- LAP --- doubly functionalized montmorillonite --- dispersion --- organo-clays --- clay-polymer nanocomposites --- sol-gel transition
Listing 1 - 6 of 6 |
Sort by
|