Listing 1 - 10 of 84 | << page >> |
Sort by
|
Choose an application
Presented in this monograph is the current state-of-the-art in the theory of convex structures. The notion of convexity covered here is considerably broader than the classic one; specifically, it is not restricted to the context of vector spaces. Classical concepts of order-convex sets (Birkhoff) and of geodesically convex sets (Menger) are directly inspired by intuition; they go back to the first half of this century. An axiomatic approach started to develop in the early Fifties. The author became attracted to it in the mid-Seventies, resulting in the present volume, in which graphs appear si
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
In this short book, the authors discuss three types of problems from combinatorial geometry: Borsuk's partition problem, covering convex bodies by smaller homothetic bodies, and the illumination problem. They show how closely related these problems are to each other. The presentation is elementary, with no more than high-school mathematics and an interest in geometry required to follow the arguments. Most of the discussion is restricted to two- and three-dimensional Euclidean space, though sometimes more general results and problems are given. Thus even the mathematically unsophisticated reader can grasp some of the results of a branch of twentieth-century mathematics that has applications in such disciplines as mathematical programming, operations research and theoretical computer science. At the end of the book the authors have collected together a set of unsolved and partially solved problems that a sixth-form student should be able to understand and even attempt to solve.
Listing 1 - 10 of 84 | << page >> |
Sort by
|