Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

Vlaams Parlement (2)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2022 (3)

2020 (2)

Listing 1 - 5 of 5
Sort by

Book
Emissions Control Catalysis
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The important advances achieved over the past years in all technological directions (industry, energy, and health) contributing to human well-being are unfortunately, in many cases, accompanied by a threat to the environment, with photochemical smog, stratospheric ozone depletion, acid rain, global warming, and finally climate change being the most well-known major issues. These are the results of a variety of pollutants emitted through these human activities. The indications show that we are already at a tipping point that might lead to non-linear and sudden environmental change on a global scale. Aiming to tackle these adverse effects in an attempt to mitigate any damage that has already occurred and to ensure that we are heading toward a cleaner (green) and sustainable future, scientists around the world are developing tools and techniques to understand, monitor, protect, and improve the environment. Emissions control catalysis is continuously advancing, providing novel, multifunctional, and optimally promoted using a variety of methods, nano-structured catalytic materials, and strategies (e.g., energy chemicals recycling, cyclic economy) that enable us to effectively control emissions, either of mobile or stationary sources, improving the quality of air (outdoor and indoor) and water and the energy economy. Representative cases include the abatement and/or recycling of CO2, CO, NOx, N2O, NH3, CH4, higher hydrocarbons, volatile organic compounds (VOCs), particulate matter, and specific industrial emissions (e.g., SOx, H2S, dioxins aromatics, and biogas). The “Emissions Control Catalysis” Special Issue has succeeded in collecting 22 high-quality contributions, included in this MDPI open access book, covering recent research progress in a variety of fields relevant to the above topics and/or applications, mainly on: (i) NOx catalytic reduction from cars (i.e., TWC) and industry (SCR) emissions; (ii) CO, CH4, and other hydrocarbons removal, and (iii) CO2 capture/recirculation combining emissions control with added-value chemicals production.

Keywords

Research & information: general --- Environmental economics --- Pollution control --- LNT --- NSR --- NOx storage --- phosphorous --- deactivation --- poisoning --- electrochemical reduction --- CO2 --- CuO --- TiO2 --- ethanol --- cerium-doped titania --- sulfur-tolerant materials --- organic compounds purification --- diesel oxidation catalyst --- vehicle exhaust --- chemical looping reforming --- hydrogen --- oxygen carrier --- CeO2 --- nanorod --- selective catalytic reduction --- nitric oxide --- ammonia --- Cu/ZSM-5 --- cerium --- zirconium --- CO2 electroreduction --- CO2 valorization --- Cu catalyst --- particle size --- PEM --- acetaldehyde production --- methanol production --- Ce-based catalyst --- stepwise precipitation --- diesel exhaust --- nitrogen oxides abatement --- electrochemical promotion --- NEMCA --- palladium --- ionic promoter --- nanoparticles --- yttria-stabilized zirconia --- direct NO decomposition --- PGM oxide promotion --- PdO vs. PtO --- in-situ FT-IR --- NO adsorption properties --- redox properties --- sintered ore catalyst --- sulfate --- In-situ DRIFTS --- SCR --- copper-ceria catalysts --- hydrothermal method --- CO oxidation --- copper clusters --- nanoceria --- SOECs --- RWGS reaction kinetics --- Au–Mo–Fe-Ni/GDC electrodes --- high temperature H2O/CO2 co-electrolysis --- platinum --- Rhodium --- iridium --- NO --- N2O --- propene --- CO --- methane --- alkali --- alkaline earth --- platinum group metals --- deNOx chemistry --- lean burn conditions --- TWC --- catalyst promotion --- EPOC --- NH3-SCR --- nanostructure --- kinetics --- thermodynamics --- manganese oxides --- Co3O4 --- complete CH4 oxidation --- hydrothermal synthesis --- precipitation --- Pd/BEA --- Cold start --- Pd species --- NOx abatement --- ammonia oxidation --- response surface methodology --- desirability function --- Box-Behnken design --- carbon dioxide --- hydrogenation --- heterogeneous catalysis --- plasma catalysis --- value-added chemicals --- methanol synthesis --- methanation --- Catalyst --- (NH4)2SO4 --- deNOx --- H2O and SO2 poisoning --- low-temperature selective catalytic reduction --- de-NOx catalysis --- SO2/H2O tolerance --- transition metal-based catalysts --- perovskite --- catalytic coating --- cathodic sputtering method --- n/a --- Au-Mo-Fe-Ni/GDC electrodes


Book
Fabrication of Carbon and Related Materials/Metal Hybrids and Composites
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue on “Fabrication of Carbon and related materials/ Metal Hybrids and Composites” presents the importance of the development of new composite and hybrid materials in different fields. It consists of 17 articles contributed by authors from different countries all over the world. The articles can be categorized into four classes. The first class of includes articles focusing on the synthesis of carbon fibers, carbon nanotubes, and graphene hybrid and composite materials. The results include the developments of the methodology and know-how of the synthesis and functionalization of the graphene surface of fibers and nanotubes and their effects on binding with the metal matrix. The second class focuses on the synthesis of new polymeric materials based on pitch/polyethylene composites and their electrical and mechanical properties, including the correlations with its microstructures. Additionally, the second class presents the results of articles, including the synthesis of new biocompatible and eco-friendly metal oxide/polymer materials with antibacterial and antimicrobial activities. The third class includes articles focused on the applications of ceramic metal oxides, such as silica and clays in the development of solar cells and in the fabrications of membranes of water treatments and desalinations. The last part of this Special Issue presents results of the articles focused on high-entropy alloys and metal matrix composites and their weldability.

Keywords

Technology: general issues --- carbon long fibers --- copper composites --- electroless copper deposition --- electroless silver deposition --- copper electroplating --- contact electrical resistivity --- ultrafiltration --- red clay --- calcium fluoride powder --- wastewater --- oil separation --- ZnO nanoparticles --- green synthesis --- cytotoxicity --- anticancer activity --- chemotherapeutic drugs --- doxorubicin --- gemcitabine --- MDA-MB 231cell line --- triple-negative breast cancer treatment --- high entropy alloys --- electroless copper plating --- thermal expansion --- hardness --- compressive strength --- direct friction stir processing --- in situ composites --- surface composites --- TES --- PCM --- paraffin wax --- multi-walled CNTs --- SEM --- EDX --- TGA --- FTIR --- indentation --- room temperature --- liquid nitrogen temperature --- spalling --- Si-NWs --- nanoscale chemical templating (NCT) --- PV --- copper --- nanocomposites --- metal-matrix composites (MMCs) --- mechanical properties --- spark plasma sintering --- hybrid materials --- chemical precipitation --- Carbopol --- BET surface area --- zeta-potential --- antibacterial activity --- mesophase-pitch --- polyethylene --- carbon-fibres --- morphology --- winder --- blend --- hot pressing --- aluminum matrix composites --- electroless silver and nickel precipitation --- wear resistance --- graphene --- silica --- hybrid composites --- adsorbents --- energy storages --- biomedical fields --- catalysts --- chemical vapor deposition (CVD) --- silicon (Si) --- nanowires (NWs) --- silica microspheres --- photovoltaic (PV) cells --- copper-zinc alloy --- graphene nanosheets --- microstructure --- electrical conductivity --- thermal conductivity --- wear rate --- extrusion --- dwell time --- mesophase pitch --- mixed CNT bundle --- crosstalk delay --- interconnect --- propagation delay --- RLC model --- nanodecoration --- first-principles calculations --- adsorption --- CO2 electroreduction


Book
Fabrication of Carbon and Related Materials/Metal Hybrids and Composites
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue on “Fabrication of Carbon and related materials/ Metal Hybrids and Composites” presents the importance of the development of new composite and hybrid materials in different fields. It consists of 17 articles contributed by authors from different countries all over the world. The articles can be categorized into four classes. The first class of includes articles focusing on the synthesis of carbon fibers, carbon nanotubes, and graphene hybrid and composite materials. The results include the developments of the methodology and know-how of the synthesis and functionalization of the graphene surface of fibers and nanotubes and their effects on binding with the metal matrix. The second class focuses on the synthesis of new polymeric materials based on pitch/polyethylene composites and their electrical and mechanical properties, including the correlations with its microstructures. Additionally, the second class presents the results of articles, including the synthesis of new biocompatible and eco-friendly metal oxide/polymer materials with antibacterial and antimicrobial activities. The third class includes articles focused on the applications of ceramic metal oxides, such as silica and clays in the development of solar cells and in the fabrications of membranes of water treatments and desalinations. The last part of this Special Issue presents results of the articles focused on high-entropy alloys and metal matrix composites and their weldability.

Keywords

Technology: general issues --- carbon long fibers --- copper composites --- electroless copper deposition --- electroless silver deposition --- copper electroplating --- contact electrical resistivity --- ultrafiltration --- red clay --- calcium fluoride powder --- wastewater --- oil separation --- ZnO nanoparticles --- green synthesis --- cytotoxicity --- anticancer activity --- chemotherapeutic drugs --- doxorubicin --- gemcitabine --- MDA-MB 231cell line --- triple-negative breast cancer treatment --- high entropy alloys --- electroless copper plating --- thermal expansion --- hardness --- compressive strength --- direct friction stir processing --- in situ composites --- surface composites --- TES --- PCM --- paraffin wax --- multi-walled CNTs --- SEM --- EDX --- TGA --- FTIR --- indentation --- room temperature --- liquid nitrogen temperature --- spalling --- Si-NWs --- nanoscale chemical templating (NCT) --- PV --- copper --- nanocomposites --- metal-matrix composites (MMCs) --- mechanical properties --- spark plasma sintering --- hybrid materials --- chemical precipitation --- Carbopol --- BET surface area --- zeta-potential --- antibacterial activity --- mesophase-pitch --- polyethylene --- carbon-fibres --- morphology --- winder --- blend --- hot pressing --- aluminum matrix composites --- electroless silver and nickel precipitation --- wear resistance --- graphene --- silica --- hybrid composites --- adsorbents --- energy storages --- biomedical fields --- catalysts --- chemical vapor deposition (CVD) --- silicon (Si) --- nanowires (NWs) --- silica microspheres --- photovoltaic (PV) cells --- copper-zinc alloy --- graphene nanosheets --- microstructure --- electrical conductivity --- thermal conductivity --- wear rate --- extrusion --- dwell time --- mesophase pitch --- mixed CNT bundle --- crosstalk delay --- interconnect --- propagation delay --- RLC model --- nanodecoration --- first-principles calculations --- adsorption --- CO2 electroreduction


Book
Fabrication of Carbon and Related Materials/Metal Hybrids and Composites
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue on “Fabrication of Carbon and related materials/ Metal Hybrids and Composites” presents the importance of the development of new composite and hybrid materials in different fields. It consists of 17 articles contributed by authors from different countries all over the world. The articles can be categorized into four classes. The first class of includes articles focusing on the synthesis of carbon fibers, carbon nanotubes, and graphene hybrid and composite materials. The results include the developments of the methodology and know-how of the synthesis and functionalization of the graphene surface of fibers and nanotubes and their effects on binding with the metal matrix. The second class focuses on the synthesis of new polymeric materials based on pitch/polyethylene composites and their electrical and mechanical properties, including the correlations with its microstructures. Additionally, the second class presents the results of articles, including the synthesis of new biocompatible and eco-friendly metal oxide/polymer materials with antibacterial and antimicrobial activities. The third class includes articles focused on the applications of ceramic metal oxides, such as silica and clays in the development of solar cells and in the fabrications of membranes of water treatments and desalinations. The last part of this Special Issue presents results of the articles focused on high-entropy alloys and metal matrix composites and their weldability.

Keywords

carbon long fibers --- copper composites --- electroless copper deposition --- electroless silver deposition --- copper electroplating --- contact electrical resistivity --- ultrafiltration --- red clay --- calcium fluoride powder --- wastewater --- oil separation --- ZnO nanoparticles --- green synthesis --- cytotoxicity --- anticancer activity --- chemotherapeutic drugs --- doxorubicin --- gemcitabine --- MDA-MB 231cell line --- triple-negative breast cancer treatment --- high entropy alloys --- electroless copper plating --- thermal expansion --- hardness --- compressive strength --- direct friction stir processing --- in situ composites --- surface composites --- TES --- PCM --- paraffin wax --- multi-walled CNTs --- SEM --- EDX --- TGA --- FTIR --- indentation --- room temperature --- liquid nitrogen temperature --- spalling --- Si-NWs --- nanoscale chemical templating (NCT) --- PV --- copper --- nanocomposites --- metal-matrix composites (MMCs) --- mechanical properties --- spark plasma sintering --- hybrid materials --- chemical precipitation --- Carbopol --- BET surface area --- zeta-potential --- antibacterial activity --- mesophase-pitch --- polyethylene --- carbon-fibres --- morphology --- winder --- blend --- hot pressing --- aluminum matrix composites --- electroless silver and nickel precipitation --- wear resistance --- graphene --- silica --- hybrid composites --- adsorbents --- energy storages --- biomedical fields --- catalysts --- chemical vapor deposition (CVD) --- silicon (Si) --- nanowires (NWs) --- silica microspheres --- photovoltaic (PV) cells --- copper-zinc alloy --- graphene nanosheets --- microstructure --- electrical conductivity --- thermal conductivity --- wear rate --- extrusion --- dwell time --- mesophase pitch --- mixed CNT bundle --- crosstalk delay --- interconnect --- propagation delay --- RLC model --- nanodecoration --- first-principles calculations --- adsorption --- CO2 electroreduction


Book
Emissions Control Catalysis
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The important advances achieved over the past years in all technological directions (industry, energy, and health) contributing to human well-being are unfortunately, in many cases, accompanied by a threat to the environment, with photochemical smog, stratospheric ozone depletion, acid rain, global warming, and finally climate change being the most well-known major issues. These are the results of a variety of pollutants emitted through these human activities. The indications show that we are already at a tipping point that might lead to non-linear and sudden environmental change on a global scale. Aiming to tackle these adverse effects in an attempt to mitigate any damage that has already occurred and to ensure that we are heading toward a cleaner (green) and sustainable future, scientists around the world are developing tools and techniques to understand, monitor, protect, and improve the environment. Emissions control catalysis is continuously advancing, providing novel, multifunctional, and optimally promoted using a variety of methods, nano-structured catalytic materials, and strategies (e.g., energy chemicals recycling, cyclic economy) that enable us to effectively control emissions, either of mobile or stationary sources, improving the quality of air (outdoor and indoor) and water and the energy economy. Representative cases include the abatement and/or recycling of CO2, CO, NOx, N2O, NH3, CH4, higher hydrocarbons, volatile organic compounds (VOCs), particulate matter, and specific industrial emissions (e.g., SOx, H2S, dioxins aromatics, and biogas). The “Emissions Control Catalysis” Special Issue has succeeded in collecting 22 high-quality contributions, included in this MDPI open access book, covering recent research progress in a variety of fields relevant to the above topics and/or applications, mainly on: (i) NOx catalytic reduction from cars (i.e., TWC) and industry (SCR) emissions; (ii) CO, CH4, and other hydrocarbons removal, and (iii) CO2 capture/recirculation combining emissions control with added-value chemicals production.

Keywords

LNT --- NSR --- NOx storage --- phosphorous --- deactivation --- poisoning --- electrochemical reduction --- CO2 --- CuO --- TiO2 --- ethanol --- cerium-doped titania --- sulfur-tolerant materials --- organic compounds purification --- diesel oxidation catalyst --- vehicle exhaust --- chemical looping reforming --- hydrogen --- oxygen carrier --- CeO2 --- nanorod --- selective catalytic reduction --- nitric oxide --- ammonia --- Cu/ZSM-5 --- cerium --- zirconium --- CO2 electroreduction --- CO2 valorization --- Cu catalyst --- particle size --- PEM --- acetaldehyde production --- methanol production --- Ce-based catalyst --- stepwise precipitation --- diesel exhaust --- nitrogen oxides abatement --- electrochemical promotion --- NEMCA --- palladium --- ionic promoter --- nanoparticles --- yttria-stabilized zirconia --- direct NO decomposition --- PGM oxide promotion --- PdO vs. PtO --- in-situ FT-IR --- NO adsorption properties --- redox properties --- sintered ore catalyst --- sulfate --- In-situ DRIFTS --- SCR --- copper-ceria catalysts --- hydrothermal method --- CO oxidation --- copper clusters --- nanoceria --- SOECs --- RWGS reaction kinetics --- Au–Mo–Fe-Ni/GDC electrodes --- high temperature H2O/CO2 co-electrolysis --- platinum --- Rhodium --- iridium --- NO --- N2O --- propene --- CO --- methane --- alkali --- alkaline earth --- platinum group metals --- deNOx chemistry --- lean burn conditions --- TWC --- catalyst promotion --- EPOC --- NH3-SCR --- nanostructure --- kinetics --- thermodynamics --- manganese oxides --- Co3O4 --- complete CH4 oxidation --- hydrothermal synthesis --- precipitation --- Pd/BEA --- Cold start --- Pd species --- NOx abatement --- ammonia oxidation --- response surface methodology --- desirability function --- Box-Behnken design --- carbon dioxide --- hydrogenation --- heterogeneous catalysis --- plasma catalysis --- value-added chemicals --- methanol synthesis --- methanation --- Catalyst --- (NH4)2SO4 --- deNOx --- H2O and SO2 poisoning --- low-temperature selective catalytic reduction --- de-NOx catalysis --- SO2/H2O tolerance --- transition metal-based catalysts --- perovskite --- catalytic coating --- cathodic sputtering method --- n/a --- Au-Mo-Fe-Ni/GDC electrodes

Listing 1 - 5 of 5
Sort by