Narrow your search
Listing 1 - 10 of 10
Sort by

Dissertation
Travail de fin d'études: Caractérisation de la dynamique environnementale au Sahel dans le contexte de la variabilité climatique à partir des indicateurs environnementaux dérivés l'imagerie satellitaire basse résolution : cas du Burkina Faso
Authors: --- --- ---
Year: 2022 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Burkina Faso, like the other countries of the Sahel, faces environmental issues partly linked to climatic and anthropogenic factors. Indeed, the strong climatic variability observed in this geographic area for decades combined with population growth and internal migrations generate a form of pressure on the environment leading to changes over time. Thus, for a better understanding and response to the various changes environmental factors, spatio-temporal monitoring of environmental dynamics is essential. This study falls within this framework. The overall objective is to contribute to a better characterization of environmental variability at the departmental scale in Burkina Faso over the past two decades (1999-2020) from environmental indicators derived from satellite imagery, namely the NDVI, with a view to identifying “potentially vulnerable areas”. To do this, CHIRPS rain data (precipitation estimates from rain gauges and satellite observations - resolution of about 4-5 km) and those of the Earth Observation
System (SPOT - vegetation - spatial resolution of 1 km) covering all the departments over the period 1999-2020 were acquired, pre-processed and analyzed in the form of time series. The data extraction approach used at the level of the departments is that of the nearest neighbor (PPV) for the rain data and of the global average excluding land cover classes for the NDVI data. The analytical approach applied is that of a statistical approach based on the analysis of trends in the series. The water use efficiency (RUE) index and the Pearson correlation were used to analyze the relationships between rainfall and vegetation in the different zones. The results show that the rainfall and environmental dynamics in Burkina Faso were characterized by high variability with different trends. With regard to the rains, 95% of the localities experienced a progressive trend of rains with 45% of significant cases. On the vegetation side, a regressive change in plant cover was observed in 63% of the departments, including 14%, or 51 departments, which showed a significant trend at the 5% threshold of the Mann-Kendall test. These observed changes are partly due to anthropogenic pressure related to agricultural purposes. Indeed, the analysis of rainfall-NDVI relationships showed negative correlations (more than 50% of departments); as well as a downward trend in the RUE ratio. In contrast, agricultural statistics data in these areas showed an increase in sown agricultural areas during the 2010-2020 period of up to 50%, as in the provinces of Tapoa, Gourma, Banwa, etc. These results make it possible to understand the changes in the environmental dynamics in Burkina Faso of the latter. They can serve as a basis for a more in-depth study with a view to planning a more rational response and management to this environmental risk, namely the degradation of the vegetation cover


Book
Application of Climatic Data in Hydrologic Models
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the past few decades, global warming and climate change have impacted the hydrologic cycle. Many models have been developed to simulate hydrologic processes. Obtaining accurate climatic data on local/meso, and global scales is essential for the realistic simulation of hydrologic processes. However, the limited availability of climatic data often poses a challenge to hydrologic modeling efforts. Hydrologic science is currently undergoing a revolution in which the field is being transformed by the multitude of newly available data streams. Historically, hydrologic models that have been developed to answer basic questions about the rainfall–runoff relationship, surface water, and groundwater storage/fluxes, land–atmosphere interactions, have been optimized for previously data-limited conditions. With the advent of remote sensing technologies and increased computational resources, the environment for water cycle researchers has fundamentally changed to one where there is now a flood of spatially distributed and time-dependent data. The bias in the climatic data is propagated through models and can yield estimation errors. Therefore, the bias in climatic data should be removed before their use in hydrologic models. Climatic data have been a core component of the science of hydrology. Their intrinsic role in understanding and managing water resources and developing sound water policies dictates their vital importance. This book aims to present recent advances concerning climatic data and their applications in hydrologic models.


Book
Application of Climatic Data in Hydrologic Models
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the past few decades, global warming and climate change have impacted the hydrologic cycle. Many models have been developed to simulate hydrologic processes. Obtaining accurate climatic data on local/meso, and global scales is essential for the realistic simulation of hydrologic processes. However, the limited availability of climatic data often poses a challenge to hydrologic modeling efforts. Hydrologic science is currently undergoing a revolution in which the field is being transformed by the multitude of newly available data streams. Historically, hydrologic models that have been developed to answer basic questions about the rainfall–runoff relationship, surface water, and groundwater storage/fluxes, land–atmosphere interactions, have been optimized for previously data-limited conditions. With the advent of remote sensing technologies and increased computational resources, the environment for water cycle researchers has fundamentally changed to one where there is now a flood of spatially distributed and time-dependent data. The bias in the climatic data is propagated through models and can yield estimation errors. Therefore, the bias in climatic data should be removed before their use in hydrologic models. Climatic data have been a core component of the science of hydrology. Their intrinsic role in understanding and managing water resources and developing sound water policies dictates their vital importance. This book aims to present recent advances concerning climatic data and their applications in hydrologic models.


Book
Application of Climatic Data in Hydrologic Models
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the past few decades, global warming and climate change have impacted the hydrologic cycle. Many models have been developed to simulate hydrologic processes. Obtaining accurate climatic data on local/meso, and global scales is essential for the realistic simulation of hydrologic processes. However, the limited availability of climatic data often poses a challenge to hydrologic modeling efforts. Hydrologic science is currently undergoing a revolution in which the field is being transformed by the multitude of newly available data streams. Historically, hydrologic models that have been developed to answer basic questions about the rainfall–runoff relationship, surface water, and groundwater storage/fluxes, land–atmosphere interactions, have been optimized for previously data-limited conditions. With the advent of remote sensing technologies and increased computational resources, the environment for water cycle researchers has fundamentally changed to one where there is now a flood of spatially distributed and time-dependent data. The bias in the climatic data is propagated through models and can yield estimation errors. Therefore, the bias in climatic data should be removed before their use in hydrologic models. Climatic data have been a core component of the science of hydrology. Their intrinsic role in understanding and managing water resources and developing sound water policies dictates their vital importance. This book aims to present recent advances concerning climatic data and their applications in hydrologic models.

Keywords

Technology: general issues --- History of engineering & technology --- statistical weather generator --- stochastic process --- Diyala River basin --- Wilks' technique --- hydrological models --- rainfall --- surface runoff --- linear regression models --- curve number --- SCS.CN model --- mulching --- wildfire --- prescribed fire --- CHIRPS --- GPM-IMERG --- rainfall data scarcity --- agro-hydrology --- Rift Valley Lake Basin --- hydrological research basin --- precipitation --- temperature --- long-term trends --- climate change --- evapotranspiration --- groundwater recharge --- thresholds --- seasonality --- spatiotemporal variations --- regional-scale --- long-term --- HydroBudget model --- cold and humid climates --- Quebec (Canada) --- tank cascade system --- dry zone --- water governance --- flood control --- traditional knowledge --- community participation --- Sri Lanka --- statistical weather generator --- stochastic process --- Diyala River basin --- Wilks' technique --- hydrological models --- rainfall --- surface runoff --- linear regression models --- curve number --- SCS.CN model --- mulching --- wildfire --- prescribed fire --- CHIRPS --- GPM-IMERG --- rainfall data scarcity --- agro-hydrology --- Rift Valley Lake Basin --- hydrological research basin --- precipitation --- temperature --- long-term trends --- climate change --- evapotranspiration --- groundwater recharge --- thresholds --- seasonality --- spatiotemporal variations --- regional-scale --- long-term --- HydroBudget model --- cold and humid climates --- Quebec (Canada) --- tank cascade system --- dry zone --- water governance --- flood control --- traditional knowledge --- community participation --- Sri Lanka


Book
Remote Sensing Analysis of Geologic Hazards
Authors: --- --- ---
ISBN: 3036557008 3036556990 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent decades, classical survey approaches have evolved and with the advent of new technologies and platforms, remote sensing systems have become popular and widely used in geosciences. Contactless devices are not invasive and allow for measuring without accessing the investigated area. This is an excellent advantage as earth surface processes often occur in remote areas and can be potentially dangerous or difficult to access. Satellite remote sensing offers the possibility of using multi-band high-resolution data over large areas. Therefore, it can be of great support for natural risk monitoring and analysis at a regional scale. On the other hand, terrestrial systems feature high spatial and temporal resolutions, which can assist in observing the evolution of fast and potentially dangerous phenomena. Therefore, proximal sensing systems are of great value for risk assessment and early warning procedures of natural hazards. This book focuses on recent and upcoming advances in the remote and proximal sensing monitoring of geologic hazards, warning procedures, and new data-processing techniques.


Book
Remote Sensing in Hydrology and Water Resources Management
Authors: --- --- --- --- --- et al.
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Water resources are the most valuable resources of sustainable socio-economic development, which is significantly affected by climate change and human activities. Water resources assessment is an urgent need for implementation of the perfect water resources management, but it is difficult to accurately evaluate the quantity and quality of water resources, especially in arid regions and high-altitude regions with sparse gauged data. This book hosts 24 papers devoted to remote sensing in hydrology and water resources management, which summarizes the recent advancement in remote sensing technology for hydrology analysis such as satellite remote sensing for water resources management, water quality monitoring and evaluation using remote sensing data, remote sensing for detecting the global impact of climate extremes, the use of remote sensing data for improved calibration of hydrological models, and so on. In general, the book will contribute to promote the application of remote sensing technology in water resources.

Keywords

Research & information: general --- precipitation datasets --- evaluation --- spatial scale --- temporal scale --- climate --- Yellow River Basin --- data assimilation --- WRF --- WRFDA --- 3DVar --- water levels --- surface areas --- volume variations --- hypsometry --- bathymetry --- lakes --- reservoirs --- remote sensing --- DAHITI --- modified strahler approach --- airborne LiDAR --- DEM --- flood inundation --- flood map --- flood model --- LiDAR --- terrestrial LiDAR --- evapotranspiration --- variability --- uncertainty --- unmanned aerial system --- sUAS --- multispectral --- viticulture --- water resources management --- California --- lake --- Tibetan Plateau --- hydrological changes --- water balance --- Chindwin basin --- hydrological modelling --- multi-variable calibration --- satellite-based rainfall product --- TRMM --- temporal resolution --- rainfall erosivity --- combined approach --- multi-objective optimization --- modeling uncertainty --- model constraint --- SWAT --- semiarid area --- hydrological variations --- normalized difference vegetation index --- total water storage change --- groundwater change --- extreme precipitation --- estimation --- TMPA 3B42-V7 --- regional frequency analysis --- China --- satellite datasets --- accuracy evaluation --- hydrological applicability --- Bosten Lake Basin --- actual evapotranspiration --- available water resources --- climate change --- vegetation greening --- VIP-RS model --- Lancang-Mekong river basin --- MSWEP --- AgMERRA --- APHRODITE --- CHIRPS --- PERSIANN --- error correction --- agricultural water management --- crop water consumption --- remote sensing model --- evapotranspiration allocation --- inland water --- IWCT --- Tianjin --- Landsat data --- Tarim River Basin --- desert-oasis ecotone --- land-use change --- CA-Markov model --- remote sensing in hydrology --- precipitation --- performance evaluation --- GPM --- Poyang Lake --- Yangtze River --- assimilation --- nonparametric modeling --- multi-source --- landscape pattern --- spatiotemporal changes --- influencing factors --- watershed --- China SE --- satellite data --- LUE-GPP --- SPEI --- copula function --- conditional probability --- soil moisture --- neural network --- downscaling --- microwave data --- MODIS data --- precipitation datasets --- evaluation --- spatial scale --- temporal scale --- climate --- Yellow River Basin --- data assimilation --- WRF --- WRFDA --- 3DVar --- water levels --- surface areas --- volume variations --- hypsometry --- bathymetry --- lakes --- reservoirs --- remote sensing --- DAHITI --- modified strahler approach --- airborne LiDAR --- DEM --- flood inundation --- flood map --- flood model --- LiDAR --- terrestrial LiDAR --- evapotranspiration --- variability --- uncertainty --- unmanned aerial system --- sUAS --- multispectral --- viticulture --- water resources management --- California --- lake --- Tibetan Plateau --- hydrological changes --- water balance --- Chindwin basin --- hydrological modelling --- multi-variable calibration --- satellite-based rainfall product --- TRMM --- temporal resolution --- rainfall erosivity --- combined approach --- multi-objective optimization --- modeling uncertainty --- model constraint --- SWAT --- semiarid area --- hydrological variations --- normalized difference vegetation index --- total water storage change --- groundwater change --- extreme precipitation --- estimation --- TMPA 3B42-V7 --- regional frequency analysis --- China --- satellite datasets --- accuracy evaluation --- hydrological applicability --- Bosten Lake Basin --- actual evapotranspiration --- available water resources --- climate change --- vegetation greening --- VIP-RS model --- Lancang-Mekong river basin --- MSWEP --- AgMERRA --- APHRODITE --- CHIRPS --- PERSIANN --- error correction --- agricultural water management --- crop water consumption --- remote sensing model --- evapotranspiration allocation --- inland water --- IWCT --- Tianjin --- Landsat data --- Tarim River Basin --- desert-oasis ecotone --- land-use change --- CA-Markov model --- remote sensing in hydrology --- precipitation --- performance evaluation --- GPM --- Poyang Lake --- Yangtze River --- assimilation --- nonparametric modeling --- multi-source --- landscape pattern --- spatiotemporal changes --- influencing factors --- watershed --- China SE --- satellite data --- LUE-GPP --- SPEI --- copula function --- conditional probability --- soil moisture --- neural network --- downscaling --- microwave data --- MODIS data


Book
Remote Sensing in Hydrology and Water Resources Management
Authors: --- --- --- --- --- et al.
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Water resources are the most valuable resources of sustainable socio-economic development, which is significantly affected by climate change and human activities. Water resources assessment is an urgent need for implementation of the perfect water resources management, but it is difficult to accurately evaluate the quantity and quality of water resources, especially in arid regions and high-altitude regions with sparse gauged data. This book hosts 24 papers devoted to remote sensing in hydrology and water resources management, which summarizes the recent advancement in remote sensing technology for hydrology analysis such as satellite remote sensing for water resources management, water quality monitoring and evaluation using remote sensing data, remote sensing for detecting the global impact of climate extremes, the use of remote sensing data for improved calibration of hydrological models, and so on. In general, the book will contribute to promote the application of remote sensing technology in water resources.

Keywords

Research & information: general --- precipitation datasets --- evaluation --- spatial scale --- temporal scale --- climate --- Yellow River Basin --- data assimilation --- WRF --- WRFDA --- 3DVar --- water levels --- surface areas --- volume variations --- hypsometry --- bathymetry --- lakes --- reservoirs --- remote sensing --- DAHITI --- modified strahler approach --- airborne LiDAR --- DEM --- flood inundation --- flood map --- flood model --- LiDAR --- terrestrial LiDAR --- evapotranspiration --- variability --- uncertainty --- unmanned aerial system --- sUAS --- multispectral --- viticulture --- water resources management --- California --- lake --- Tibetan Plateau --- hydrological changes --- water balance --- Chindwin basin --- hydrological modelling --- multi-variable calibration --- satellite-based rainfall product --- TRMM --- temporal resolution --- rainfall erosivity --- combined approach --- multi-objective optimization --- modeling uncertainty --- model constraint --- SWAT --- semiarid area --- hydrological variations --- normalized difference vegetation index --- total water storage change --- groundwater change --- extreme precipitation --- estimation --- TMPA 3B42-V7 --- regional frequency analysis --- China --- satellite datasets --- accuracy evaluation --- hydrological applicability --- Bosten Lake Basin --- actual evapotranspiration --- available water resources --- climate change --- vegetation greening --- VIP-RS model --- Lancang-Mekong river basin --- MSWEP --- AgMERRA --- APHRODITE --- CHIRPS --- PERSIANN --- error correction --- agricultural water management --- crop water consumption --- remote sensing model --- evapotranspiration allocation --- inland water --- IWCT --- Tianjin --- Landsat data --- Tarim River Basin --- desert-oasis ecotone --- land-use change --- CA-Markov model --- remote sensing in hydrology --- precipitation --- performance evaluation --- GPM --- Poyang Lake --- Yangtze River --- assimilation --- nonparametric modeling --- multi-source --- n/a --- landscape pattern --- spatiotemporal changes --- influencing factors --- watershed --- China SE --- satellite data --- LUE-GPP --- SPEI --- copula function --- conditional probability --- soil moisture --- neural network --- downscaling --- microwave data --- MODIS data


Book
Remote Sensing in Hydrology and Water Resources Management
Authors: --- --- --- --- --- et al.
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Water resources are the most valuable resources of sustainable socio-economic development, which is significantly affected by climate change and human activities. Water resources assessment is an urgent need for implementation of the perfect water resources management, but it is difficult to accurately evaluate the quantity and quality of water resources, especially in arid regions and high-altitude regions with sparse gauged data. This book hosts 24 papers devoted to remote sensing in hydrology and water resources management, which summarizes the recent advancement in remote sensing technology for hydrology analysis such as satellite remote sensing for water resources management, water quality monitoring and evaluation using remote sensing data, remote sensing for detecting the global impact of climate extremes, the use of remote sensing data for improved calibration of hydrological models, and so on. In general, the book will contribute to promote the application of remote sensing technology in water resources.

Keywords

precipitation datasets --- evaluation --- spatial scale --- temporal scale --- climate --- Yellow River Basin --- data assimilation --- WRF --- WRFDA --- 3DVar --- water levels --- surface areas --- volume variations --- hypsometry --- bathymetry --- lakes --- reservoirs --- remote sensing --- DAHITI --- modified strahler approach --- airborne LiDAR --- DEM --- flood inundation --- flood map --- flood model --- LiDAR --- terrestrial LiDAR --- evapotranspiration --- variability --- uncertainty --- unmanned aerial system --- sUAS --- multispectral --- viticulture --- water resources management --- California --- lake --- Tibetan Plateau --- hydrological changes --- water balance --- Chindwin basin --- hydrological modelling --- multi-variable calibration --- satellite-based rainfall product --- TRMM --- temporal resolution --- rainfall erosivity --- combined approach --- multi-objective optimization --- modeling uncertainty --- model constraint --- SWAT --- semiarid area --- hydrological variations --- normalized difference vegetation index --- total water storage change --- groundwater change --- extreme precipitation --- estimation --- TMPA 3B42-V7 --- regional frequency analysis --- China --- satellite datasets --- accuracy evaluation --- hydrological applicability --- Bosten Lake Basin --- actual evapotranspiration --- available water resources --- climate change --- vegetation greening --- VIP-RS model --- Lancang-Mekong river basin --- MSWEP --- AgMERRA --- APHRODITE --- CHIRPS --- PERSIANN --- error correction --- agricultural water management --- crop water consumption --- remote sensing model --- evapotranspiration allocation --- inland water --- IWCT --- Tianjin --- Landsat data --- Tarim River Basin --- desert-oasis ecotone --- land-use change --- CA-Markov model --- remote sensing in hydrology --- precipitation --- performance evaluation --- GPM --- Poyang Lake --- Yangtze River --- assimilation --- nonparametric modeling --- multi-source --- n/a --- landscape pattern --- spatiotemporal changes --- influencing factors --- watershed --- China SE --- satellite data --- LUE-GPP --- SPEI --- copula function --- conditional probability --- soil moisture --- neural network --- downscaling --- microwave data --- MODIS data


Book
Remote Sensing of Precipitation: Volume 2
Author:
ISBN: 3039212885 3039212877 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earth’s atmosphere–ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne.

Keywords

satellite radiance --- WRF-Hydro --- meteorological radar --- QPE --- microstructure of rain --- TMPA --- evaluation --- precipitation --- volume matching --- CFSR --- GMI --- terminal velocity --- TRMM-TMPA --- surface rain intensity --- retrieval algorithm --- rain gauges --- tropical cyclone --- CMORPH --- T-Matrix --- Global Precipitation Measurement (GPM) --- statistical evaluation --- vertical air velocity --- heavy rainfall prediction --- GPM IMERG v5 --- Tianshan Mountains --- Red River Basin --- precipitation retrieval --- satellite precipitation --- PERSIANN-CCS --- validation network --- PEMW --- satellite rainfall estimate --- high latitude --- Cyprus --- GPM --- wet deposition --- CloudSat --- thundercloud --- GPS --- satellite remote sensing --- assessment --- numerical weather prediction --- mineral dust --- complex terrain --- mesoscale precipitation patterns --- GNSS meteorology --- lumped models --- satellites --- Southern China --- error analysis --- topography --- cloud scavenging --- radar reflectivity–rain rate relationship --- CHAOS --- RADOLAN --- hydrometeor classification --- TRMM --- thunderstorm --- CHIRPS --- satellite precipitation retrieval --- GPM/IMERG --- GSMaP --- bias correction --- Precise Point Positioning --- Mainland China --- supercooled droplets detection --- SEID --- Saharan dust transportation --- Huaihe River basin --- GPM Microwave Imager --- satellite --- TMPA 3B42RT --- forecast model --- quality indexes --- SEVIRI --- radiometer --- triple collocation --- satellite precipitation product --- Mandra --- synoptic weather types --- drop size distribution (DSD) --- Amazon Basin --- weather radar --- X-band radar --- downscaling --- precipitation rate --- neural networks --- rain rate --- CMIP --- GPM-era IMERG --- GR models --- weather --- typhoon --- satellite rainfall retrievals --- TRMM 3B42 v7 --- validation --- low-cost receivers --- rainfall retrieval techniques --- snowfall detection --- GPM satellite --- Zenith Tropospheric Delay --- 3B42 --- hurricane Harvey --- PERSIANN_CDR --- TRMM 3B42 V7 --- snow water path retrieval --- DPR --- satellite precipitation adjustment --- Peninsular Spain --- RMAPS --- daily rainfall estimations --- streamflow simulation --- regional climate models --- Red–Thai Binh River Basin --- Ensemble Precipitation (EP) algorithm --- cloud radar --- disdrometer --- TRMM-era TMPA --- hydrometeorology --- MSG --- radar data assimilation --- dust washout process --- runoff simulations --- geostationary microwave sensors --- radar --- topographical and seasonal evaluation --- goGPS --- XPOL radar --- TMPA 3B42V7 --- telemetric rain gauge --- harmonie model --- tropical storm rainfall --- linear-scaling approach --- Milešovka observatory --- precipitable water vapor --- heavy precipitation --- hydrological simulation --- reflectivity --- Ka-band --- Tibetan Plateau --- satellite rainfall estimates --- regional rainfall regimes --- Lai Nullah --- microwave scattering --- remote sensing --- pre-processing --- rainfall rate --- MSWEP --- climatology --- VIC model --- CMORPH_CRT --- IMERG --- single frequency GNSS --- PERSIANN --- flood-inducing storm --- climate models --- Pakistan --- precipitating hydrometeor --- data assimilation --- rainfall --- kriging with external drift --- dual-polarization --- quantitative precipitation estimates --- flash flood --- Satellite Precipitation Estimates --- gridded radar precipitation --- regional rainfall sub-regimes --- polar systems


Book
Remote sensing of precipitation
Author:
ISBN: 3039212869 3039212850 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earth’s atmosphere–ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne.

Keywords

satellite radiance --- WRF-Hydro --- meteorological radar --- QPE --- microstructure of rain --- TMPA --- evaluation --- precipitation --- volume matching --- CFSR --- GMI --- terminal velocity --- TRMM-TMPA --- surface rain intensity --- retrieval algorithm --- rain gauges --- tropical cyclone --- CMORPH --- T-Matrix --- Global Precipitation Measurement (GPM) --- statistical evaluation --- vertical air velocity --- heavy rainfall prediction --- GPM IMERG v5 --- Tianshan Mountains --- Red River Basin --- precipitation retrieval --- satellite precipitation --- PERSIANN-CCS --- validation network --- PEMW --- satellite rainfall estimate --- high latitude --- Cyprus --- GPM --- wet deposition --- CloudSat --- thundercloud --- GPS --- satellite remote sensing --- assessment --- numerical weather prediction --- mineral dust --- complex terrain --- mesoscale precipitation patterns --- GNSS meteorology --- lumped models --- satellites --- Southern China --- error analysis --- topography --- cloud scavenging --- radar reflectivity–rain rate relationship --- CHAOS --- RADOLAN --- hydrometeor classification --- TRMM --- thunderstorm --- CHIRPS --- satellite precipitation retrieval --- GPM/IMERG --- GSMaP --- bias correction --- Precise Point Positioning --- Mainland China --- supercooled droplets detection --- SEID --- Saharan dust transportation --- Huaihe River basin --- GPM Microwave Imager --- satellite --- TMPA 3B42RT --- forecast model --- quality indexes --- SEVIRI --- radiometer --- triple collocation --- satellite precipitation product --- Mandra --- synoptic weather types --- drop size distribution (DSD) --- Amazon Basin --- weather radar --- X-band radar --- downscaling --- precipitation rate --- neural networks --- rain rate --- CMIP --- GPM-era IMERG --- GR models --- weather --- typhoon --- satellite rainfall retrievals --- TRMM 3B42 v7 --- validation --- low-cost receivers --- rainfall retrieval techniques --- snowfall detection --- GPM satellite --- Zenith Tropospheric Delay --- 3B42 --- hurricane Harvey --- PERSIANN_CDR --- TRMM 3B42 V7 --- snow water path retrieval --- DPR --- satellite precipitation adjustment --- Peninsular Spain --- RMAPS --- daily rainfall estimations --- streamflow simulation --- regional climate models --- Red–Thai Binh River Basin --- Ensemble Precipitation (EP) algorithm --- cloud radar --- disdrometer --- TRMM-era TMPA --- hydrometeorology --- MSG --- radar data assimilation --- dust washout process --- runoff simulations --- geostationary microwave sensors --- radar --- topographical and seasonal evaluation --- goGPS --- XPOL radar --- TMPA 3B42V7 --- telemetric rain gauge --- harmonie model --- tropical storm rainfall --- linear-scaling approach --- Milešovka observatory --- precipitable water vapor --- heavy precipitation --- hydrological simulation --- reflectivity --- Ka-band --- Tibetan Plateau --- satellite rainfall estimates --- regional rainfall regimes --- Lai Nullah --- microwave scattering --- remote sensing --- pre-processing --- rainfall rate --- MSWEP --- climatology --- VIC model --- CMORPH_CRT --- IMERG --- single frequency GNSS --- PERSIANN --- flood-inducing storm --- climate models --- Pakistan --- precipitating hydrometeor --- data assimilation --- rainfall --- kriging with external drift --- dual-polarization --- quantitative precipitation estimates --- flash flood --- Satellite Precipitation Estimates --- gridded radar precipitation --- regional rainfall sub-regimes --- polar systems --- Environmental engineering. --- Environmental monitoring. --- Biomonitoring (Ecology) --- Ecological monitoring --- Environmental quality --- Monitoring, Environmental --- Applied ecology --- Environmental engineering --- Pollution --- Environmental control --- Environmental effects --- Environmental stresses --- Engineering --- Environmental health --- Environmental protection --- Sustainable engineering --- Measurement --- Monitoring

Listing 1 - 10 of 10
Sort by