Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULiège (1)

VIVES (1)

Vlaams Parlement (1)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2020 (2)

Listing 1 - 2 of 2
Sort by

Book
Molecular Basis and Gene Therapies of Cystic Fibrosis
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Summary of Genes. Thirty years ago, the gene responsible for cystic fibrosis (CF), a recessive genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene, was identified. This progress has considerably changed our understanding of the pathophysiology of CF and has paved the way for the development of novel and specific therapies for the disease. The CFTR gene contains 27 exons and is characterized by a frequent three base pair deletion of the p.Phe508del. As a result of collaborative work, today more than 2000 mutations have been reported in the gene, and their impact on protein function is now more evident and useful in designing new strategies to correct the gene defect. The field of gene therapy, as illustrated by Ziying Yan in this book, has worked on identifying an efficient vector system for the delivery of the wild-type CFTR gene to the lung. At the same time, animal models have been developed in mice, rats, rabbits, zebrafish, ferrets, and pigs to establish the efficacity of gene delivery. These animals are also of the utmost importance in testing new molecules as modulators or correctors to improve the CFTR lung function. During the last three decades, the epidemiology of CF has dramatically changed, as today cystic fibrosis is now a chronic adult pulmonary disease.


Book
Molecular Basis and Gene Therapies of Cystic Fibrosis
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Summary of Genes. Thirty years ago, the gene responsible for cystic fibrosis (CF), a recessive genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene, was identified. This progress has considerably changed our understanding of the pathophysiology of CF and has paved the way for the development of novel and specific therapies for the disease. The CFTR gene contains 27 exons and is characterized by a frequent three base pair deletion of the p.Phe508del. As a result of collaborative work, today more than 2000 mutations have been reported in the gene, and their impact on protein function is now more evident and useful in designing new strategies to correct the gene defect. The field of gene therapy, as illustrated by Ziying Yan in this book, has worked on identifying an efficient vector system for the delivery of the wild-type CFTR gene to the lung. At the same time, animal models have been developed in mice, rats, rabbits, zebrafish, ferrets, and pigs to establish the efficacity of gene delivery. These animals are also of the utmost importance in testing new molecules as modulators or correctors to improve the CFTR lung function. During the last three decades, the epidemiology of CF has dramatically changed, as today cystic fibrosis is now a chronic adult pulmonary disease.

Keywords

Medicine --- cystic fibrosis --- Staphylococcus aureus --- superantigen --- enterotoxin gene cluster --- MRSA --- exosomes --- microvesicles --- lung --- primary cells --- newborn screening --- trypsinogen --- CFTR gene --- next generation sequencing --- health policy --- rAAV2/HBoV1 --- baculovirus --- insect cells --- lung microbiome --- metagenomics --- gut–lung axis --- Cystic fibrosis --- CFTR --- transcriptomics --- proteostasis --- small molecules --- drug development --- common and new pathogenic variants --- ethnic Russian population --- gene therapy --- cyclophosphamide --- transient immunosuppression --- incidence --- survival --- genotype-phenotype correlations --- health policies --- CFTR modulators --- human nasal epithelial cells --- organoids --- biomarker --- functional assay --- pre-clinical in vitro models --- CFTR-related disorders --- molecular diagnosis --- CFTR variants --- Next Generation Sequencing (NGS) --- disease liability --- interpretation --- penetrance --- genotype-guided therapy --- miRNA --- airway basal cell --- lentivirus --- cystic fibrosis --- Staphylococcus aureus --- superantigen --- enterotoxin gene cluster --- MRSA --- exosomes --- microvesicles --- lung --- primary cells --- newborn screening --- trypsinogen --- CFTR gene --- next generation sequencing --- health policy --- rAAV2/HBoV1 --- baculovirus --- insect cells --- lung microbiome --- metagenomics --- gut–lung axis --- Cystic fibrosis --- CFTR --- transcriptomics --- proteostasis --- small molecules --- drug development --- common and new pathogenic variants --- ethnic Russian population --- gene therapy --- cyclophosphamide --- transient immunosuppression --- incidence --- survival --- genotype-phenotype correlations --- health policies --- CFTR modulators --- human nasal epithelial cells --- organoids --- biomarker --- functional assay --- pre-clinical in vitro models --- CFTR-related disorders --- molecular diagnosis --- CFTR variants --- Next Generation Sequencing (NGS) --- disease liability --- interpretation --- penetrance --- genotype-guided therapy --- miRNA --- airway basal cell --- lentivirus

Listing 1 - 2 of 2
Sort by