Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULiège (3)

VIVES (3)

Vlaams Parlement (3)

More...

Resource type

book (8)


Language

English (8)


Year
From To Submit

2022 (3)

2020 (5)

Listing 1 - 8 of 8
Sort by

Book
Molecular Basis and Gene Therapies of Cystic Fibrosis
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Summary of Genes. Thirty years ago, the gene responsible for cystic fibrosis (CF), a recessive genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene, was identified. This progress has considerably changed our understanding of the pathophysiology of CF and has paved the way for the development of novel and specific therapies for the disease. The CFTR gene contains 27 exons and is characterized by a frequent three base pair deletion of the p.Phe508del. As a result of collaborative work, today more than 2000 mutations have been reported in the gene, and their impact on protein function is now more evident and useful in designing new strategies to correct the gene defect. The field of gene therapy, as illustrated by Ziying Yan in this book, has worked on identifying an efficient vector system for the delivery of the wild-type CFTR gene to the lung. At the same time, animal models have been developed in mice, rats, rabbits, zebrafish, ferrets, and pigs to establish the efficacity of gene delivery. These animals are also of the utmost importance in testing new molecules as modulators or correctors to improve the CFTR lung function. During the last three decades, the epidemiology of CF has dramatically changed, as today cystic fibrosis is now a chronic adult pulmonary disease.


Book
Molecular Basis and Gene Therapies of Cystic Fibrosis
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Summary of Genes. Thirty years ago, the gene responsible for cystic fibrosis (CF), a recessive genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene, was identified. This progress has considerably changed our understanding of the pathophysiology of CF and has paved the way for the development of novel and specific therapies for the disease. The CFTR gene contains 27 exons and is characterized by a frequent three base pair deletion of the p.Phe508del. As a result of collaborative work, today more than 2000 mutations have been reported in the gene, and their impact on protein function is now more evident and useful in designing new strategies to correct the gene defect. The field of gene therapy, as illustrated by Ziying Yan in this book, has worked on identifying an efficient vector system for the delivery of the wild-type CFTR gene to the lung. At the same time, animal models have been developed in mice, rats, rabbits, zebrafish, ferrets, and pigs to establish the efficacity of gene delivery. These animals are also of the utmost importance in testing new molecules as modulators or correctors to improve the CFTR lung function. During the last three decades, the epidemiology of CF has dramatically changed, as today cystic fibrosis is now a chronic adult pulmonary disease.

Keywords

Medicine --- cystic fibrosis --- Staphylococcus aureus --- superantigen --- enterotoxin gene cluster --- MRSA --- exosomes --- microvesicles --- lung --- primary cells --- newborn screening --- trypsinogen --- CFTR gene --- next generation sequencing --- health policy --- rAAV2/HBoV1 --- baculovirus --- insect cells --- lung microbiome --- metagenomics --- gut–lung axis --- Cystic fibrosis --- CFTR --- transcriptomics --- proteostasis --- small molecules --- drug development --- common and new pathogenic variants --- ethnic Russian population --- gene therapy --- cyclophosphamide --- transient immunosuppression --- incidence --- survival --- genotype-phenotype correlations --- health policies --- CFTR modulators --- human nasal epithelial cells --- organoids --- biomarker --- functional assay --- pre-clinical in vitro models --- CFTR-related disorders --- molecular diagnosis --- CFTR variants --- Next Generation Sequencing (NGS) --- disease liability --- interpretation --- penetrance --- genotype-guided therapy --- miRNA --- airway basal cell --- lentivirus --- cystic fibrosis --- Staphylococcus aureus --- superantigen --- enterotoxin gene cluster --- MRSA --- exosomes --- microvesicles --- lung --- primary cells --- newborn screening --- trypsinogen --- CFTR gene --- next generation sequencing --- health policy --- rAAV2/HBoV1 --- baculovirus --- insect cells --- lung microbiome --- metagenomics --- gut–lung axis --- Cystic fibrosis --- CFTR --- transcriptomics --- proteostasis --- small molecules --- drug development --- common and new pathogenic variants --- ethnic Russian population --- gene therapy --- cyclophosphamide --- transient immunosuppression --- incidence --- survival --- genotype-phenotype correlations --- health policies --- CFTR modulators --- human nasal epithelial cells --- organoids --- biomarker --- functional assay --- pre-clinical in vitro models --- CFTR-related disorders --- molecular diagnosis --- CFTR variants --- Next Generation Sequencing (NGS) --- disease liability --- interpretation --- penetrance --- genotype-guided therapy --- miRNA --- airway basal cell --- lentivirus


Book
Peptide Nucleic Acids : Applications in Biomedical Sciences
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book compiles four review articles and four research papers that highlight recent developments in the field of peptide nucleic acid (PNA) chemistry and biomedicine. The review articles encompass a variety of fields related to PNA, emphasizing the versatility of this DNA mimic. Two excellent reviews detail the use of PNA for molecular diagnostics of miRNAs and genetic point mutations (SNPs). Another review provides a comprehensive analysis of the various approaches for gene editing using chemically modified PNA molecules. Lastly, PNA molecules are elegantly described as effective (antisense) antimicrobial agents in the final review. The high binding affinity of PNA to complementary DNA and RNA is highlighted in three research articles. Two articles show how PNA molecules act as splice modulating and RNA masking molecules, separately. In another contribution, the high affinity and achiral characteristics of PNAs are used to developed a stable L-DNA-based catalytic hairpin assembly. Lastly, chemically-modified PNA molecules are shown to be superior probes for SNP detection. Altogether, these studies illustrate how PNA molecules may be useful for a variety of biomedical applications as either therapeutic or diagnostic agents.


Book
Peptide Nucleic Acids : Applications in Biomedical Sciences
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book compiles four review articles and four research papers that highlight recent developments in the field of peptide nucleic acid (PNA) chemistry and biomedicine. The review articles encompass a variety of fields related to PNA, emphasizing the versatility of this DNA mimic. Two excellent reviews detail the use of PNA for molecular diagnostics of miRNAs and genetic point mutations (SNPs). Another review provides a comprehensive analysis of the various approaches for gene editing using chemically modified PNA molecules. Lastly, PNA molecules are elegantly described as effective (antisense) antimicrobial agents in the final review. The high binding affinity of PNA to complementary DNA and RNA is highlighted in three research articles. Two articles show how PNA molecules act as splice modulating and RNA masking molecules, separately. In another contribution, the high affinity and achiral characteristics of PNAs are used to developed a stable L-DNA-based catalytic hairpin assembly. Lastly, chemically-modified PNA molecules are shown to be superior probes for SNP detection. Altogether, these studies illustrate how PNA molecules may be useful for a variety of biomedical applications as either therapeutic or diagnostic agents.


Book
Peptide Nucleic Acids : Applications in Biomedical Sciences
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book compiles four review articles and four research papers that highlight recent developments in the field of peptide nucleic acid (PNA) chemistry and biomedicine. The review articles encompass a variety of fields related to PNA, emphasizing the versatility of this DNA mimic. Two excellent reviews detail the use of PNA for molecular diagnostics of miRNAs and genetic point mutations (SNPs). Another review provides a comprehensive analysis of the various approaches for gene editing using chemically modified PNA molecules. Lastly, PNA molecules are elegantly described as effective (antisense) antimicrobial agents in the final review. The high binding affinity of PNA to complementary DNA and RNA is highlighted in three research articles. Two articles show how PNA molecules act as splice modulating and RNA masking molecules, separately. In another contribution, the high affinity and achiral characteristics of PNAs are used to developed a stable L-DNA-based catalytic hairpin assembly. Lastly, chemically-modified PNA molecules are shown to be superior probes for SNP detection. Altogether, these studies illustrate how PNA molecules may be useful for a variety of biomedical applications as either therapeutic or diagnostic agents.

Keywords

Medicine --- RNA structure --- strand invasion --- antisense --- PNA --- exon skipping --- exon inclusion --- oligonucleotides --- peptide nucleic acid (PNA) --- antibacterials --- RNA --- PNA transporters --- conjugates --- bacterial resistance --- peptide nucleic acids --- triplex --- gene editing --- structure --- recombination --- repair --- nanoparticles --- β-thalassemia --- cystic fibrosis --- peptide nucleic acid --- tolane --- single nucleotide polymorphism --- influenza virus --- drug resistance --- peptide nucleic acids (PNAs) --- single-nucleotide polymorphism (SNP) --- polymerase chain reaction (PCR) --- cancer. --- catalytic hairpin assembly (CHA) --- strand-displacement reaction --- l-DNA --- microRNA --- fluorescence --- templated reactions --- light-triggered --- electrochemical biosensors --- colorimetric detection --- Peptide nucleic acids --- PNA-masking --- microRNAs --- miR-145-5p --- miRNA targeting --- delivery --- CFTR --- RNA structure --- strand invasion --- antisense --- PNA --- exon skipping --- exon inclusion --- oligonucleotides --- peptide nucleic acid (PNA) --- antibacterials --- RNA --- PNA transporters --- conjugates --- bacterial resistance --- peptide nucleic acids --- triplex --- gene editing --- structure --- recombination --- repair --- nanoparticles --- β-thalassemia --- cystic fibrosis --- peptide nucleic acid --- tolane --- single nucleotide polymorphism --- influenza virus --- drug resistance --- peptide nucleic acids (PNAs) --- single-nucleotide polymorphism (SNP) --- polymerase chain reaction (PCR) --- cancer. --- catalytic hairpin assembly (CHA) --- strand-displacement reaction --- l-DNA --- microRNA --- fluorescence --- templated reactions --- light-triggered --- electrochemical biosensors --- colorimetric detection --- Peptide nucleic acids --- PNA-masking --- microRNAs --- miR-145-5p --- miRNA targeting --- delivery --- CFTR


Book
Advance in the Treatment of Pediatric Leukemia
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book gives an overview on the progress that has been made in the treatment of acute lymphoblastic leukemia (ALL), of acute and chronic myeloid leukemia (AML, CML) and of juvenile myelomonocytic leukemia (JMML). Leukemia is the most common malignant disease in children, and 80% of patients are diagnosed with ALL and 15–20% with AML, whereas CML and JMML are rather rare. Although ALL was considered an incurable disease until the early 1960s, with the availability of cytotoxic drugs and the start of clinical multicenter studies, ALL has become an almost curable disease with a survival rate exceeding 90 % in high-income countries. These impressive results have mainly been achieved by a deeper understanding of the genomic landscape of the disease and the introduction of risk stratifications based on genetic features and response to chemotherapy as determined by the presence or absence of minimal residual disease (MRD). Immunotherapies including bispecific T-cell Engagers (BiTEs), Chimeric Antigen Receptor (CAR) T cells, monoclonal antibodies and improvements in the outcome of allogeneic stem cell transplantation (HSCT) have shown impressive results in chemorefractory or relapsed patients, and it is anticipated that the cure rate can be further increased. For countries with less resources, therapies have to be adapted to increase survival as well. This book also updates on the progress made in the treatment of AML. As in ALL, risk classification based on genetic factors and response to chemotherapy is most important for therapy guidance. The book also provides updates and guidance for the treatment of CML and JMML.


Book
Advance in the Treatment of Pediatric Leukemia
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book gives an overview on the progress that has been made in the treatment of acute lymphoblastic leukemia (ALL), of acute and chronic myeloid leukemia (AML, CML) and of juvenile myelomonocytic leukemia (JMML). Leukemia is the most common malignant disease in children, and 80% of patients are diagnosed with ALL and 15–20% with AML, whereas CML and JMML are rather rare. Although ALL was considered an incurable disease until the early 1960s, with the availability of cytotoxic drugs and the start of clinical multicenter studies, ALL has become an almost curable disease with a survival rate exceeding 90 % in high-income countries. These impressive results have mainly been achieved by a deeper understanding of the genomic landscape of the disease and the introduction of risk stratifications based on genetic features and response to chemotherapy as determined by the presence or absence of minimal residual disease (MRD). Immunotherapies including bispecific T-cell Engagers (BiTEs), Chimeric Antigen Receptor (CAR) T cells, monoclonal antibodies and improvements in the outcome of allogeneic stem cell transplantation (HSCT) have shown impressive results in chemorefractory or relapsed patients, and it is anticipated that the cure rate can be further increased. For countries with less resources, therapies have to be adapted to increase survival as well. This book also updates on the progress made in the treatment of AML. As in ALL, risk classification based on genetic factors and response to chemotherapy is most important for therapy guidance. The book also provides updates and guidance for the treatment of CML and JMML.


Book
Advance in the Treatment of Pediatric Leukemia
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book gives an overview on the progress that has been made in the treatment of acute lymphoblastic leukemia (ALL), of acute and chronic myeloid leukemia (AML, CML) and of juvenile myelomonocytic leukemia (JMML). Leukemia is the most common malignant disease in children, and 80% of patients are diagnosed with ALL and 15–20% with AML, whereas CML and JMML are rather rare. Although ALL was considered an incurable disease until the early 1960s, with the availability of cytotoxic drugs and the start of clinical multicenter studies, ALL has become an almost curable disease with a survival rate exceeding 90 % in high-income countries. These impressive results have mainly been achieved by a deeper understanding of the genomic landscape of the disease and the introduction of risk stratifications based on genetic features and response to chemotherapy as determined by the presence or absence of minimal residual disease (MRD). Immunotherapies including bispecific T-cell Engagers (BiTEs), Chimeric Antigen Receptor (CAR) T cells, monoclonal antibodies and improvements in the outcome of allogeneic stem cell transplantation (HSCT) have shown impressive results in chemorefractory or relapsed patients, and it is anticipated that the cure rate can be further increased. For countries with less resources, therapies have to be adapted to increase survival as well. This book also updates on the progress made in the treatment of AML. As in ALL, risk classification based on genetic factors and response to chemotherapy is most important for therapy guidance. The book also provides updates and guidance for the treatment of CML and JMML.

Keywords

Research & information: general --- Chemistry --- acute lymphoblastic leukemia --- pediatric --- advances --- diagnosis --- treatment --- immunotherapy --- bispecific T-cell engager (BiTE) --- BCP-ALL --- leukemia --- TRAIL --- antibody --- Fc-engineering --- xenograft --- CD19 --- juvenile myelomonocytic leukemia --- RAS signaling --- hematopoietic stem cell transplantation --- 5-azacitidine --- myelodysplastic/myeloproliferative disorders --- targeted therapy --- ADC --- antibody-drug conjugate --- pediatric leukemia --- ALL --- AML --- allogeneic stem cell transplantation --- acute myeloid leukemia --- minimal residual disease --- conditioning regimen --- alternative donors --- B-ALL --- DUX4 --- IKZF1 --- PAX5 --- Ph-like --- ZNF384 --- NUTM1 --- T-ALL --- NOTCH1 --- BCL11B --- transcriptome --- genome --- chronic myeloid leukemia --- CML --- tyrosine kinase inhibitor --- immunizations --- COVID-19 --- childhood acute lymphoblastic leukemia --- low-risk ALL --- risk-stratified treatment --- treatment related toxicity --- L-asparaginase --- acute pancreatitis --- polymorphism --- SNV --- ABCC4 --- CFTR --- other extramedullary relapse --- lymphoblastic leukemia --- children --- prognosis --- evolution of CAR T cells --- FDA-approved CAR products --- TcR versus CAR --- limitations and complications of CAR T cell therapy --- future directions of CAR T cell therapy --- acute lymphoblastic leukemia --- pediatric --- advances --- diagnosis --- treatment --- immunotherapy --- bispecific T-cell engager (BiTE) --- BCP-ALL --- leukemia --- TRAIL --- antibody --- Fc-engineering --- xenograft --- CD19 --- juvenile myelomonocytic leukemia --- RAS signaling --- hematopoietic stem cell transplantation --- 5-azacitidine --- myelodysplastic/myeloproliferative disorders --- targeted therapy --- ADC --- antibody-drug conjugate --- pediatric leukemia --- ALL --- AML --- allogeneic stem cell transplantation --- acute myeloid leukemia --- minimal residual disease --- conditioning regimen --- alternative donors --- B-ALL --- DUX4 --- IKZF1 --- PAX5 --- Ph-like --- ZNF384 --- NUTM1 --- T-ALL --- NOTCH1 --- BCL11B --- transcriptome --- genome --- chronic myeloid leukemia --- CML --- tyrosine kinase inhibitor --- immunizations --- COVID-19 --- childhood acute lymphoblastic leukemia --- low-risk ALL --- risk-stratified treatment --- treatment related toxicity --- L-asparaginase --- acute pancreatitis --- polymorphism --- SNV --- ABCC4 --- CFTR --- other extramedullary relapse --- lymphoblastic leukemia --- children --- prognosis --- evolution of CAR T cells --- FDA-approved CAR products --- TcR versus CAR --- limitations and complications of CAR T cell therapy --- future directions of CAR T cell therapy

Listing 1 - 8 of 8
Sort by