Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (3)

2016 (3)

Listing 1 - 6 of 6
Sort by

Book
Microbiotechnology Based Surfactants and Their Applications
Author:
Year: 2016 Publisher: Frontiers Media SA,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biosurfactants are structurally diverse group of bioactive molecules produced by a variety of microorganisms. They are secondary metabolites that accumulate at interfaces, reduce surface tension and form micellar aggregates. This research topic describes few novel microbial strains with a focus on increasing our understanding of genetics, physiology, regulation of biosurfactant production and their commercial potentials. A major stumbling block in the commercialization of biosurfactants is their high cost of production. Many factors play a significant role in making the process cost-effective and the most important one being the use of low-cost substrates such as agricultural residues for the production of biosurfactants. With the stringent government regulations coming into effect in favor of production and usage of the bio-based surfactants, many new companies aim to commercialize technologies used for the production of biosurfactants and to bring down costs. This Research Topic covers a compilation of original research articles, reviews and research commentary submitted by researchers enthusiastically working in the field of biosurfactants and highlights recent advances in our knowledge of the biosurfactants and understanding of the biochemical and molecular mechanisms involved in their production, scale-up and industrial applications. Apart from their diverse applications in the field of bioremediation, enhanced oil recovery, cosmetic, food and medical industries, biosurfactants can also boast off their unique eco-friendly nature to attract consumers and give the chemical surfactants a tough competition in the global market. This biosurfactant focused research topic aims to summarize the current achievements and explore the direction of development for the future generation of biosurfactants and bioemulsifiers. Some of the biosurfactant optimization processes presented are well-structured and already have a well-established research community. We wish to stimulate on-going discussions at the level of the biosurfactant production including common challenges in the process development, novel organisms and new feedstock and technologies for maximum benefit, key features of next generation biosurfactants and bioemulsifiers. We have compiled the research outputs of international leaders in the filed of biosurfactant particularly on the development of a state-of-the-art and highly-efficient process platform.


Book
Microbiotechnology Based Surfactants and Their Applications
Author:
Year: 2016 Publisher: Frontiers Media SA,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biosurfactants are structurally diverse group of bioactive molecules produced by a variety of microorganisms. They are secondary metabolites that accumulate at interfaces, reduce surface tension and form micellar aggregates. This research topic describes few novel microbial strains with a focus on increasing our understanding of genetics, physiology, regulation of biosurfactant production and their commercial potentials. A major stumbling block in the commercialization of biosurfactants is their high cost of production. Many factors play a significant role in making the process cost-effective and the most important one being the use of low-cost substrates such as agricultural residues for the production of biosurfactants. With the stringent government regulations coming into effect in favor of production and usage of the bio-based surfactants, many new companies aim to commercialize technologies used for the production of biosurfactants and to bring down costs. This Research Topic covers a compilation of original research articles, reviews and research commentary submitted by researchers enthusiastically working in the field of biosurfactants and highlights recent advances in our knowledge of the biosurfactants and understanding of the biochemical and molecular mechanisms involved in their production, scale-up and industrial applications. Apart from their diverse applications in the field of bioremediation, enhanced oil recovery, cosmetic, food and medical industries, biosurfactants can also boast off their unique eco-friendly nature to attract consumers and give the chemical surfactants a tough competition in the global market. This biosurfactant focused research topic aims to summarize the current achievements and explore the direction of development for the future generation of biosurfactants and bioemulsifiers. Some of the biosurfactant optimization processes presented are well-structured and already have a well-established research community. We wish to stimulate on-going discussions at the level of the biosurfactant production including common challenges in the process development, novel organisms and new feedstock and technologies for maximum benefit, key features of next generation biosurfactants and bioemulsifiers. We have compiled the research outputs of international leaders in the filed of biosurfactant particularly on the development of a state-of-the-art and highly-efficient process platform.


Book
Microbiotechnology Based Surfactants and Their Applications
Author:
Year: 2016 Publisher: Frontiers Media SA,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biosurfactants are structurally diverse group of bioactive molecules produced by a variety of microorganisms. They are secondary metabolites that accumulate at interfaces, reduce surface tension and form micellar aggregates. This research topic describes few novel microbial strains with a focus on increasing our understanding of genetics, physiology, regulation of biosurfactant production and their commercial potentials. A major stumbling block in the commercialization of biosurfactants is their high cost of production. Many factors play a significant role in making the process cost-effective and the most important one being the use of low-cost substrates such as agricultural residues for the production of biosurfactants. With the stringent government regulations coming into effect in favor of production and usage of the bio-based surfactants, many new companies aim to commercialize technologies used for the production of biosurfactants and to bring down costs. This Research Topic covers a compilation of original research articles, reviews and research commentary submitted by researchers enthusiastically working in the field of biosurfactants and highlights recent advances in our knowledge of the biosurfactants and understanding of the biochemical and molecular mechanisms involved in their production, scale-up and industrial applications. Apart from their diverse applications in the field of bioremediation, enhanced oil recovery, cosmetic, food and medical industries, biosurfactants can also boast off their unique eco-friendly nature to attract consumers and give the chemical surfactants a tough competition in the global market. This biosurfactant focused research topic aims to summarize the current achievements and explore the direction of development for the future generation of biosurfactants and bioemulsifiers. Some of the biosurfactant optimization processes presented are well-structured and already have a well-established research community. We wish to stimulate on-going discussions at the level of the biosurfactant production including common challenges in the process development, novel organisms and new feedstock and technologies for maximum benefit, key features of next generation biosurfactants and bioemulsifiers. We have compiled the research outputs of international leaders in the filed of biosurfactant particularly on the development of a state-of-the-art and highly-efficient process platform.


Book
Food Waste Valorization
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Food waste is becoming an important and growing concern at both local and global levels. According to the Food and Agriculture Organization of the United Nations (FAO), one-third of all food production is wasted globally, and in particular, 1.3 billion tons of food produced for human consumption is wasted per year, representing an economic loss of EUR 800 billion. The main foods wasted are represented by vegetables, fruits, meat, and fish. Considering the high availability and the composition of food waste, there is an increasing interest in their bio-valorization. Moreover, according to the global Sustainable Development Goals (SDGs 12 and 13), an appropriate waste management represents an essential prerequisite for the sustainable development.This reprint collects interesting manuscripts regarding innovative research focused on food waste valorization through fermentation processes for obtaining value-added products such as enzymes, feed additives, biofuels, animal feeds as well as other useful chemicals or products, food-grade pigments, and single-cell protein (SCP), enhancing food security and environmentally sustainable development.

Keywords

Technology: general issues --- Biotechnology --- industrial food waste --- valorization --- biorefinery --- bioenergy --- biobased materials --- promotion policy --- rice husk --- pyrolysis --- porous biochar --- pore property --- surface composition --- microbial red pigment --- Monascus purpureus --- simultaneous hydrolysis and fermentation --- sustainability --- whey --- RSM --- bioethanol --- yeast fermentation --- sugar beet molasses --- industrial by-product --- scale-up --- agricultural waste --- wastewater --- microbial fuel cell --- techno-economic --- commercialization --- life cycle assessment --- Neurospora intermedia --- bread --- process development --- cheese whey --- Aspergillus awamori --- β-galactosidase --- lactose hydrolysis --- Acetobacter xylinum --- bacterial cellulose --- biosurfactant --- bioemulsifier --- waste frying oil --- Bacillus cereus --- food additives --- cookie --- microalgae --- DHA --- lignocellulosic biomass --- organosolv fractionation --- liquid fraction --- solid pulp --- omega-3 fatty acids --- soap --- olives --- olive oil --- fermentation --- food waste --- fish waste --- citrus peel --- aquafeed --- Saccharomyces cerevisiae --- Lactobacillus reuteri --- whey product --- proteins --- ultrafiltration --- nanofiltration --- keratinocytes scratch assay --- mozzarella cheese manufacturing --- pressing residue --- grape --- apple --- silage --- animal production --- enzyme production --- polyphenols --- Juglans regia L. --- walnut green husk --- agricultural wastes --- soil conditions --- glucans --- pectins --- Aspergillus oryzae --- rice hull --- paper mill wastewater --- bioremediation --- amylase --- solid-state fermentation (SSF) --- goat feeding --- durian peel --- silage additives --- propionate --- methane mitigation --- nitrogen balance --- waste management --- biofuel production --- circular economy --- single cell protein --- value-added product --- food and feed production --- yeast --- probiotics --- industrial food waste --- valorization --- biorefinery --- bioenergy --- biobased materials --- promotion policy --- rice husk --- pyrolysis --- porous biochar --- pore property --- surface composition --- microbial red pigment --- Monascus purpureus --- simultaneous hydrolysis and fermentation --- sustainability --- whey --- RSM --- bioethanol --- yeast fermentation --- sugar beet molasses --- industrial by-product --- scale-up --- agricultural waste --- wastewater --- microbial fuel cell --- techno-economic --- commercialization --- life cycle assessment --- Neurospora intermedia --- bread --- process development --- cheese whey --- Aspergillus awamori --- β-galactosidase --- lactose hydrolysis --- Acetobacter xylinum --- bacterial cellulose --- biosurfactant --- bioemulsifier --- waste frying oil --- Bacillus cereus --- food additives --- cookie --- microalgae --- DHA --- lignocellulosic biomass --- organosolv fractionation --- liquid fraction --- solid pulp --- omega-3 fatty acids --- soap --- olives --- olive oil --- fermentation --- food waste --- fish waste --- citrus peel --- aquafeed --- Saccharomyces cerevisiae --- Lactobacillus reuteri --- whey product --- proteins --- ultrafiltration --- nanofiltration --- keratinocytes scratch assay --- mozzarella cheese manufacturing --- pressing residue --- grape --- apple --- silage --- animal production --- enzyme production --- polyphenols --- Juglans regia L. --- walnut green husk --- agricultural wastes --- soil conditions --- glucans --- pectins --- Aspergillus oryzae --- rice hull --- paper mill wastewater --- bioremediation --- amylase --- solid-state fermentation (SSF) --- goat feeding --- durian peel --- silage additives --- propionate --- methane mitigation --- nitrogen balance --- waste management --- biofuel production --- circular economy --- single cell protein --- value-added product --- food and feed production --- yeast --- probiotics


Book
Food Waste Valorization
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Food waste is becoming an important and growing concern at both local and global levels. According to the Food and Agriculture Organization of the United Nations (FAO), one-third of all food production is wasted globally, and in particular, 1.3 billion tons of food produced for human consumption is wasted per year, representing an economic loss of EUR 800 billion. The main foods wasted are represented by vegetables, fruits, meat, and fish. Considering the high availability and the composition of food waste, there is an increasing interest in their bio-valorization. Moreover, according to the global Sustainable Development Goals (SDGs 12 and 13), an appropriate waste management represents an essential prerequisite for the sustainable development.This reprint collects interesting manuscripts regarding innovative research focused on food waste valorization through fermentation processes for obtaining value-added products such as enzymes, feed additives, biofuels, animal feeds as well as other useful chemicals or products, food-grade pigments, and single-cell protein (SCP), enhancing food security and environmentally sustainable development.

Keywords

Technology: general issues --- Biotechnology --- industrial food waste --- valorization --- biorefinery --- bioenergy --- biobased materials --- promotion policy --- rice husk --- pyrolysis --- porous biochar --- pore property --- surface composition --- microbial red pigment --- Monascus purpureus --- simultaneous hydrolysis and fermentation --- sustainability --- whey --- RSM --- bioethanol --- yeast fermentation --- sugar beet molasses --- industrial by-product --- scale-up --- agricultural waste --- wastewater --- microbial fuel cell --- techno-economic --- commercialization --- life cycle assessment --- Neurospora intermedia --- bread --- process development --- cheese whey --- Aspergillus awamori --- β-galactosidase --- lactose hydrolysis --- Acetobacter xylinum --- bacterial cellulose --- biosurfactant --- bioemulsifier --- waste frying oil --- Bacillus cereus --- food additives --- cookie --- microalgae --- DHA --- lignocellulosic biomass --- organosolv fractionation --- liquid fraction --- solid pulp --- omega-3 fatty acids --- soap --- olives --- olive oil --- fermentation --- food waste --- fish waste --- citrus peel --- aquafeed --- Saccharomyces cerevisiae --- Lactobacillus reuteri --- whey product --- proteins --- ultrafiltration --- nanofiltration --- keratinocytes scratch assay --- mozzarella cheese manufacturing --- pressing residue --- grape --- apple --- silage --- animal production --- enzyme production --- polyphenols --- Juglans regia L. --- walnut green husk --- agricultural wastes --- soil conditions --- glucans --- pectins --- Aspergillus oryzae --- rice hull --- paper mill wastewater --- bioremediation --- amylase --- solid-state fermentation (SSF) --- goat feeding --- durian peel --- silage additives --- propionate --- methane mitigation --- nitrogen balance --- waste management --- biofuel production --- circular economy --- single cell protein --- value-added product --- food and feed production --- yeast --- probiotics


Book
Food Waste Valorization
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Food waste is becoming an important and growing concern at both local and global levels. According to the Food and Agriculture Organization of the United Nations (FAO), one-third of all food production is wasted globally, and in particular, 1.3 billion tons of food produced for human consumption is wasted per year, representing an economic loss of EUR 800 billion. The main foods wasted are represented by vegetables, fruits, meat, and fish. Considering the high availability and the composition of food waste, there is an increasing interest in their bio-valorization. Moreover, according to the global Sustainable Development Goals (SDGs 12 and 13), an appropriate waste management represents an essential prerequisite for the sustainable development.This reprint collects interesting manuscripts regarding innovative research focused on food waste valorization through fermentation processes for obtaining value-added products such as enzymes, feed additives, biofuels, animal feeds as well as other useful chemicals or products, food-grade pigments, and single-cell protein (SCP), enhancing food security and environmentally sustainable development.

Keywords

industrial food waste --- valorization --- biorefinery --- bioenergy --- biobased materials --- promotion policy --- rice husk --- pyrolysis --- porous biochar --- pore property --- surface composition --- microbial red pigment --- Monascus purpureus --- simultaneous hydrolysis and fermentation --- sustainability --- whey --- RSM --- bioethanol --- yeast fermentation --- sugar beet molasses --- industrial by-product --- scale-up --- agricultural waste --- wastewater --- microbial fuel cell --- techno-economic --- commercialization --- life cycle assessment --- Neurospora intermedia --- bread --- process development --- cheese whey --- Aspergillus awamori --- β-galactosidase --- lactose hydrolysis --- Acetobacter xylinum --- bacterial cellulose --- biosurfactant --- bioemulsifier --- waste frying oil --- Bacillus cereus --- food additives --- cookie --- microalgae --- DHA --- lignocellulosic biomass --- organosolv fractionation --- liquid fraction --- solid pulp --- omega-3 fatty acids --- soap --- olives --- olive oil --- fermentation --- food waste --- fish waste --- citrus peel --- aquafeed --- Saccharomyces cerevisiae --- Lactobacillus reuteri --- whey product --- proteins --- ultrafiltration --- nanofiltration --- keratinocytes scratch assay --- mozzarella cheese manufacturing --- pressing residue --- grape --- apple --- silage --- animal production --- enzyme production --- polyphenols --- Juglans regia L. --- walnut green husk --- agricultural wastes --- soil conditions --- glucans --- pectins --- Aspergillus oryzae --- rice hull --- paper mill wastewater --- bioremediation --- amylase --- solid-state fermentation (SSF) --- goat feeding --- durian peel --- silage additives --- propionate --- methane mitigation --- nitrogen balance --- waste management --- biofuel production --- circular economy --- single cell protein --- value-added product --- food and feed production --- yeast --- probiotics

Listing 1 - 6 of 6
Sort by